These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 26398564

  • 1. Automatic white matter lesion segmentation using contrast enhanced FLAIR intensity and Markov Random Field.
    Roy PK, Bhuiyan A, Janke A, Desmond PM, Wong TY, Abhayaratna WP, Storey E, Ramamohanarao K.
    Comput Med Imaging Graph; 2015 Oct; 45():102-11. PubMed ID: 26398564
    [Abstract] [Full Text] [Related]

  • 2. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images.
    Karimaghaloo Z, Arnold DL, Arbel T.
    Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811
    [Abstract] [Full Text] [Related]

  • 3. Coarse Classification to Region-Scalable Refining for White Matter Lesions Segmentation in Multi-Channel MRI.
    Yu R, Xiao L, Wei Z.
    CNS Neurol Disord Drug Targets; 2017 Jan; 16(2):150-159. PubMed ID: 28000558
    [Abstract] [Full Text] [Related]

  • 4. Reproducible segmentation of white matter hyperintensities using a new statistical definition.
    Damangir S, Westman E, Simmons A, Vrenken H, Wahlund LO, Spulber G.
    MAGMA; 2017 Jun; 30(3):227-237. PubMed ID: 27943055
    [Abstract] [Full Text] [Related]

  • 5. Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
    Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, Connelly A, Campbell B, Palmer S, Sharma G, Christensen S, Carey L.
    Neuroimage; 2014 Sep; 98():324-35. PubMed ID: 24793830
    [Abstract] [Full Text] [Related]

  • 6. Automatic segmentation and volumetric quantification of white matter hyperintensities on fluid-attenuated inversion recovery images using the extreme value distribution.
    Wang R, Li C, Wang J, Wei X, Li Y, Zhu Y, Zhang S.
    Neuroradiology; 2015 Mar; 57(3):307-20. PubMed ID: 25407717
    [Abstract] [Full Text] [Related]

  • 7. White matter lesion extension to automatic brain tissue segmentation on MRI.
    de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, Breteler MM, Niessen WJ.
    Neuroimage; 2009 May 01; 45(4):1151-61. PubMed ID: 19344687
    [Abstract] [Full Text] [Related]

  • 8. IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI.
    Subbanna N, Precup D, Arnold D, Arbel T.
    Inf Process Med Imaging; 2015 May 01; 24():514-26. PubMed ID: 26221699
    [Abstract] [Full Text] [Related]

  • 9. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M, Yan Q, Qin M.
    Comput Assist Surg (Abingdon); 2017 Dec 01; 22(sup1):200-211. PubMed ID: 29072503
    [Abstract] [Full Text] [Related]

  • 10. Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy.
    Wang R, Li C, Wang J, Wei X, Li Y, Hui C, Zhu Y, Zhang S.
    Magn Reson Imaging; 2014 Dec 01; 32(10):1321-9. PubMed ID: 25131627
    [Abstract] [Full Text] [Related]

  • 11. Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model.
    Khayati R, Vafadust M, Towhidkhah F, Nabavi M.
    Comput Biol Med; 2008 Mar 01; 38(3):379-90. PubMed ID: 18262511
    [Abstract] [Full Text] [Related]

  • 12. Advanced magnetic resonance imaging techniques in the evaluation of pediatric white matter diseases.
    Rueda-Lopes FC, Doring TM, Gasparetto EL.
    Top Magn Reson Imaging; 2011 Oct 01; 22(5):251-8. PubMed ID: 24562094
    [Abstract] [Full Text] [Related]

  • 13. A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images.
    Khayati R, Vafadust M, Towhidkhah F, Nabavi SM.
    Comput Med Imaging Graph; 2008 Mar 01; 32(2):124-33. PubMed ID: 18055174
    [Abstract] [Full Text] [Related]

  • 14. Lesion filling effect in regional brain volume estimations: a study in multiple sclerosis patients with low lesion load.
    Pareto D, Sastre-Garriga J, Aymerich FX, Auger C, Tintoré M, Montalban X, Rovira A.
    Neuroradiology; 2016 May 01; 58(5):467-74. PubMed ID: 26847633
    [Abstract] [Full Text] [Related]

  • 15. Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.
    Fazlollahi A, Meriaudeau F, Giancardo L, Villemagne VL, Rowe CC, Yates P, Salvado O, Bourgeat P, AIBL Research Group.
    Comput Med Imaging Graph; 2015 Dec 01; 46 Pt 3():269-76. PubMed ID: 26560677
    [Abstract] [Full Text] [Related]

  • 16. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis.
    Shah M, Xiao Y, Subbanna N, Francis S, Arnold DL, Collins DL, Arbel T.
    Med Image Anal; 2011 Apr 01; 15(2):267-82. PubMed ID: 21233004
    [Abstract] [Full Text] [Related]

  • 17. Measuring brain lesion progression with a supervised tissue classification system.
    Zacharaki EI, Kanterakis S, Bryan RN, Davatzikos C.
    Med Image Comput Comput Assist Interv; 2008 Apr 01; 11(Pt 1):620-7. PubMed ID: 18979798
    [Abstract] [Full Text] [Related]

  • 18. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis.
    Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, Frackowiak R, Schluep M, Du Pasquier R, Thiran JP, Krueger G, Bach Cuadra M, Granziera C.
    J Magn Reson Imaging; 2016 Jun 01; 43(6):1445-54. PubMed ID: 26606758
    [Abstract] [Full Text] [Related]

  • 19. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects.
    Tran P, Thoprakarn U, Gourieux E, Dos Santos CL, Cavedo E, Guizard N, Cotton F, Krolak-Salmon P, Delmaire C, Heidelberg D, Pyatigorskaya N, Ströer S, Dormont D, Martini JB, Chupin M, Alzheimer's Disease Neuroimaging Initiatives, for the Frontotemporal Lobar Degeneration Neuroimaging Initiative.
    Neuroimage Clin; 2022 Jun 01; 33():102940. PubMed ID: 35051744
    [Abstract] [Full Text] [Related]

  • 20. Weighting training images by maximizing distribution similarity for supervised segmentation across scanners.
    Opbroek AV, Vernooij MW, Ikram MA, Bruijne M.
    Med Image Anal; 2015 Aug 01; 24(1):245-254. PubMed ID: 26210914
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.