These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
430 related items for PubMed ID: 26403333
21. In vitro efficacy of sodium selenite in reducing toxin production, spore outgrowth and antibiotic resistance in hypervirulent Clostridium difficile. Pellissery AJ, Vinayamohan PG, Yin HB, Mooyottu S, Venkitanarayanan K. J Med Microbiol; 2019 Jul; 68(7):1118-1128. PubMed ID: 31172910 [Abstract] [Full Text] [Related]
22. Comparison of planktonic and biofilm-associated communities of Clostridium difficile and indigenous gut microbiota in a triple-stage chemostat gut model. Crowther GS, Chilton CH, Todhunter SL, Nicholson S, Freeman J, Baines SD, Wilcox MH. J Antimicrob Chemother; 2014 Aug; 69(8):2137-47. PubMed ID: 24788662 [Abstract] [Full Text] [Related]
23. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA. J Bacteriol; 2015 Dec 14; 198(5):777-86. PubMed ID: 26668265 [Abstract] [Full Text] [Related]
24. Revisiting the Role of Csp Family Proteins in Regulating Clostridium difficile Spore Germination. Kevorkian Y, Shen A. J Bacteriol; 2017 Nov 15; 199(22):. PubMed ID: 28874406 [Abstract] [Full Text] [Related]
26. Virulence factors of Clostridium difficile and their role during infection. Janoir C. Anaerobe; 2016 Feb 15; 37():13-24. PubMed ID: 26596863 [Abstract] [Full Text] [Related]
27. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in Clostridium difficile. Chen KY, Rathod J, Chiu YC, Chen JW, Tsai PJ, Huang IH. Front Cell Infect Microbiol; 2019 Feb 15; 9():356. PubMed ID: 31681632 [Abstract] [Full Text] [Related]
28. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes. Sirard S, Valiquette L, Fortier LC. J Clin Microbiol; 2011 Dec 15; 49(12):4040-6. PubMed ID: 21956985 [Abstract] [Full Text] [Related]
31. First clinical and microbiological characterization of Clostridium difficile infection in a Croatian University Hospital. Novak A, Spigaglia P, Barbanti F, Goic-Barisic I, Tonkic M. Anaerobe; 2014 Dec 15; 30():18-23. PubMed ID: 25079669 [Abstract] [Full Text] [Related]
32. Germination response of spores of the pathogenic bacterium Clostridium perfringens and Clostridium difficile to cultured human epithelial cells. Paredes-Sabja D, Sarker MR. Anaerobe; 2011 Apr 15; 17(2):78-84. PubMed ID: 21315167 [Abstract] [Full Text] [Related]
33. Molecular and microbiological characterization of Clostridium difficile isolates from single, relapse, and reinfection cases. Oka K, Osaki T, Hanawa T, Kurata S, Okazaki M, Manzoku T, Takahashi M, Tanaka M, Taguchi H, Watanabe T, Inamatsu T, Kamiya S. J Clin Microbiol; 2012 Mar 15; 50(3):915-21. PubMed ID: 22205786 [Abstract] [Full Text] [Related]
34. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation. Edwards AN, Krall EG, McBride SM. J Bacteriol; 2020 Jan 02; 202(2):. PubMed ID: 31659010 [Abstract] [Full Text] [Related]
35. Whole-genome sequencing improves discrimination of relapse from reinfection and identifies transmission events among patients with recurrent Clostridium difficile infections. Mac Aogáin M, Moloney G, Kilkenny S, Kelleher M, Kelleghan M, Boyle B, Rogers TR. J Hosp Infect; 2015 Jun 02; 90(2):108-16. PubMed ID: 25935700 [Abstract] [Full Text] [Related]
37. Association of Fidaxomicin with C. difficile Spores: Effects of Persistence on Subsequent Spore Recovery, Outgrowth and Toxin Production. Chilton CH, Crowther GS, Ashwin H, Longshaw CM, Wilcox MH. PLoS One; 2016 Jun 02; 11(8):e0161200. PubMed ID: 27556739 [Abstract] [Full Text] [Related]