These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
472 related items for PubMed ID: 26406458
1. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors. Pang J, Zhang Z, Jin H. Biosens Bioelectron; 2016 Mar 15; 77():174-81. PubMed ID: 26406458 [Abstract] [Full Text] [Related]
2. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes. Zhang Z, Tao C, Yin J, Wang Y, Li Y. Biosens Bioelectron; 2018 Apr 30; 103():39-44. PubMed ID: 29278811 [Abstract] [Full Text] [Related]
3. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Schoukroun-Barnes LR, Wagan S, White RJ. Anal Chem; 2014 Jan 21; 86(2):1131-7. PubMed ID: 24377296 [Abstract] [Full Text] [Related]
4. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A. Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S. Biosens Bioelectron; 2010 Oct 15; 26(2):710-6. PubMed ID: 20643539 [Abstract] [Full Text] [Related]
5. Aptamer/Au nanoparticles/cobalt sulfide nanosheets biosensor for 17β-estradiol detection using a guanine-rich complementary DNA sequence for signal amplification. Huang KJ, Liu YJ, Zhang JZ, Cao JT, Liu YM. Biosens Bioelectron; 2015 May 15; 67():184-91. PubMed ID: 25155132 [Abstract] [Full Text] [Related]
6. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. Feng L, Sivanesan A, Lyu Z, Offenhäusser A, Mayer D. Biosens Bioelectron; 2015 Apr 15; 66():62-8. PubMed ID: 25460883 [Abstract] [Full Text] [Related]
7. Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Perrier S, Ravelet C, Guieu V, Fize J, Roy B, Perigaud C, Peyrin E. Biosens Bioelectron; 2010 Mar 15; 25(7):1652-7. PubMed ID: 20034782 [Abstract] [Full Text] [Related]
8. Electrochemiluminescent biosensor of ATP using tetrahedron structured DNA and a functional oligonucleotide for Ru(phen)3(2+) intercalation and target identification. Bu NN, Gao A, He XW, Yin XB. Biosens Bioelectron; 2013 May 15; 43():200-4. PubMed ID: 23313611 [Abstract] [Full Text] [Related]
9. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Xiao Y, Lai RY, Plaxco KW. Nat Protoc; 2007 May 15; 2(11):2875-80. PubMed ID: 18007622 [Abstract] [Full Text] [Related]
10. Aptamer switch probe based on intramolecular displacement. Tang Z, Mallikaratchy P, Yang R, Kim Y, Zhu Z, Wang H, Tan W. J Am Chem Soc; 2008 Aug 27; 130(34):11268-9. PubMed ID: 18680291 [Abstract] [Full Text] [Related]
11. Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. White RJ, Phares N, Lubin AA, Xiao Y, Plaxco KW. Langmuir; 2008 Sep 16; 24(18):10513-8. PubMed ID: 18690727 [Abstract] [Full Text] [Related]
12. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Lu Y, Zhu N, Yu P, Mao L. Analyst; 2008 Sep 16; 133(9):1256-60. PubMed ID: 18709204 [Abstract] [Full Text] [Related]
13. An aptamer-based electrochemiluminescent biosensor for ATP detection. Yao W, Wang L, Wang H, Zhang X, Li L. Biosens Bioelectron; 2009 Jul 15; 24(11):3269-74. PubMed ID: 19443209 [Abstract] [Full Text] [Related]
14. Electrochemical DNA biosensor based on proximity-dependent DNA ligation assays with DNAzyme amplification of hairpin substrate signal. Sun C, Zhang L, Jiang J, Shen G, Yu R. Biosens Bioelectron; 2010 Jul 15; 25(11):2483-9. PubMed ID: 20439157 [Abstract] [Full Text] [Related]
15. Structural Changes of Mercaptohexanol Self-Assembled Monolayers on Gold and Their Influence on Impedimetric Aptamer Sensors. Xu X, Makaraviciute A, Kumar S, Wen C, Sjödin M, Abdurakhmanov E, Danielson UH, Nyholm L, Zhang Z. Anal Chem; 2019 Nov 19; 91(22):14697-14704. PubMed ID: 31650834 [Abstract] [Full Text] [Related]
16. A novel label-free and enzyme-free electrochemical aptasensor based on DNA in situ metallization. Qian Y, Gao F, Du L, Zhang Y, Tang D, Yang D. Biosens Bioelectron; 2015 Dec 15; 74():483-90. PubMed ID: 26176208 [Abstract] [Full Text] [Related]
17. An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. Cai Z, Song Y, Wu Y, Zhu Z, Yang CJ, Chen X. Biosens Bioelectron; 2013 Mar 15; 41():783-8. PubMed ID: 23102830 [Abstract] [Full Text] [Related]
18. DNA module platform for developing colorimetric aptamer sensors. Tomita Y, Morita Y, Suga H, Fujiwara D. Biotechniques; 2016 Mar 15; 60(6):285-92. PubMed ID: 27286805 [Abstract] [Full Text] [Related]
19. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Peng Y, Zhang D, Li Y, Qi H, Gao Q, Zhang C. Biosens Bioelectron; 2009 Sep 15; 25(1):94-9. PubMed ID: 19559590 [Abstract] [Full Text] [Related]
20. An electrochemical aptasensor based on enzyme linked aptamer assay. Zhang DW, Sun CJ, Zhang FT, Xu L, Zhou YL, Zhang XX. Biosens Bioelectron; 2012 Jan 15; 31(1):363-8. PubMed ID: 22100766 [Abstract] [Full Text] [Related] Page: [Next] [New Search]