These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


687 related items for PubMed ID: 26411450

  • 21. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils.
    Tauqeer HM, Ur-Rahman M, Hussain S, Abbas F, Iqbal M.
    Ecotoxicol Environ Saf; 2019 May 30; 173():273-284. PubMed ID: 30776560
    [Abstract] [Full Text] [Related]

  • 22. Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species.
    Ma W, Zhao B, Ma J.
    Environ Sci Pollut Res Int; 2019 Sep 30; 26(26):26733-26747. PubMed ID: 31292879
    [Abstract] [Full Text] [Related]

  • 23. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF, Ngwa ES, Chikoye D, Suh CE.
    Int J Phytoremediation; 2014 Sep 30; 16(3):302-19. PubMed ID: 24912226
    [Abstract] [Full Text] [Related]

  • 24. Phytoremediation potential of wild plants growing on soil contaminated with heavy metals.
    Čudić V, Stojiljković D, Jovović A.
    Arh Hig Rada Toksikol; 2016 Sep 01; 67(3):229-239. PubMed ID: 27749263
    [Abstract] [Full Text] [Related]

  • 25. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching.
    Shrestha P, Bellitürk K, Görres JH.
    Int J Environ Res Public Health; 2019 Apr 09; 16(7):. PubMed ID: 30970575
    [Abstract] [Full Text] [Related]

  • 26. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil.
    Mousavi Kouhi SM, Moudi M.
    Environ Sci Pollut Res Int; 2020 Mar 09; 27(9):10027-10038. PubMed ID: 31933083
    [Abstract] [Full Text] [Related]

  • 27. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.
    Lorestani B, Yousefi N, Cheraghi M, Farmany A.
    Environ Monit Assess; 2013 Dec 09; 185(12):10217-23. PubMed ID: 23856813
    [Abstract] [Full Text] [Related]

  • 28. Bamboo - An untapped plant resource for the phytoremediation of heavy metal contaminated soils.
    Bian F, Zhong Z, Zhang X, Yang C, Gai X.
    Chemosphere; 2020 May 09; 246():125750. PubMed ID: 31891850
    [Abstract] [Full Text] [Related]

  • 29. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK, Akoto R.
    Ecotoxicol Environ Saf; 2018 Feb 09; 148():97-104. PubMed ID: 29031880
    [Abstract] [Full Text] [Related]

  • 30. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment.
    Jun L, Wei H, Aili M, Juan N, Hongyan X, Jingsong H, Yunhua Z, Cuiying P.
    Environ Res; 2020 Sep 09; 188():109886. PubMed ID: 32846652
    [Abstract] [Full Text] [Related]

  • 31. Anaerobic digestion as an alternative disposal for phytoremediated biomass from heavy metal contaminated sites.
    Lee J, Park KY, Cho J, Kwon EE, Kim JY.
    Environ Pollut; 2018 Dec 09; 243(Pt B):1704-1709. PubMed ID: 30408857
    [Abstract] [Full Text] [Related]

  • 32. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.
    Shen ZJ, Xu C, Chen YS, Zhang Z.
    Ecotoxicol Environ Saf; 2017 Sep 09; 143():19-27. PubMed ID: 28494313
    [Abstract] [Full Text] [Related]

  • 33. Phytoremediation potential evaluation of three rhubarb species and comparative analysis of their rhizosphere characteristics in a Cd- and Pb-contaminated soil.
    Yang J, Huang Y, Zhao G, Li B, Qin X, Xu J, Li X.
    Chemosphere; 2022 Jun 09; 296():134045. PubMed ID: 35183585
    [Abstract] [Full Text] [Related]

  • 34. Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil.
    Bian F, Zhong Z, Zhang X, Yang C.
    Environ Sci Pollut Res Int; 2017 Dec 09; 24(35):27244-27253. PubMed ID: 28965200
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.
    Tzvetkova N, Miladinova K, Ivanova K, Georgieva T, Geneva M, Markovska Y.
    J Environ Biol; 2015 Jan 09; 36 Spec No():145-51. PubMed ID: 26591894
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.
    Cicero-Fernández D, Peña-Fernández M, Expósito-Camargo JA, Antizar-Ladislao B.
    Int J Phytoremediation; 2016 Jan 09; 18(6):575-82. PubMed ID: 26375048
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 35.