These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
255 related items for PubMed ID: 26419953
1. Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. Zhang X, Shi C, Liu E, Li J, Zhao N, He C. Nanoscale; 2015 Oct 28; 7(40):17079-87. PubMed ID: 26419953 [Abstract] [Full Text] [Related]
2. Surface-Enhanced Raman Scattering Based on Controllable-Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. Qiu H, Huo Y, Li Z, Zhang C, Chen P, Jiang S, Xu S, Ma Y, Wang S, Li H. Chemphyschem; 2015 Oct 05; 16(14):2953-60. PubMed ID: 26266687 [Abstract] [Full Text] [Related]
3. An all-copper plasmonic sandwich system obtained through directly depositing copper NPs on a CVD grown graphene/copper film and its application in SERS. Li X, Ren X, Zhang Y, Choy WC, Wei B. Nanoscale; 2015 Jul 14; 7(26):11291-9. PubMed ID: 25959991 [Abstract] [Full Text] [Related]
4. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, Du X, Qiu B. Biosens Bioelectron; 2014 Apr 15; 54():273-8. PubMed ID: 24287416 [Abstract] [Full Text] [Related]
5. Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. Sun S, Wu P. Phys Chem Chem Phys; 2011 Dec 21; 13(47):21116-20. PubMed ID: 22020382 [Abstract] [Full Text] [Related]
6. Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Liang X, Liang B, Pan Z, Lang X, Zhang Y, Wang G, Yin P, Guo L. Nanoscale; 2015 Dec 21; 7(47):20188-96. PubMed ID: 26575834 [Abstract] [Full Text] [Related]
7. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y, Zhu Y. Nanoscale; 2014 Nov 21; 6(22):13754-60. PubMed ID: 25285780 [Abstract] [Full Text] [Related]
8. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y, Yang D, Li X, Liu Y, Hu X, Zhou D, Lu Y. Nanoscale; 2017 Jan 19; 9(3):1087-1096. PubMed ID: 27973628 [Abstract] [Full Text] [Related]
9. Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering. Lee JP, Chen D, Li X, Yoo S, Bottomley LA, El-Sayed MA, Park S, Liu M. Nanoscale; 2013 Dec 07; 5(23):11620-4. PubMed ID: 24126702 [Abstract] [Full Text] [Related]
10. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap. Xiang Q, Zhu X, Chen Y, Duan H. Nanotechnology; 2016 Feb 19; 27(7):075201. PubMed ID: 26762890 [Abstract] [Full Text] [Related]
11. Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. Xu S, Man B, Jiang S, Wang J, Wei J, Xu S, Liu H, Gao S, Liu H, Li Z, Li H, Qiu H. ACS Appl Mater Interfaces; 2015 May 27; 7(20):10977-87. PubMed ID: 25941901 [Abstract] [Full Text] [Related]
12. Fabrication of small-sized silver NPs/graphene sheets for high-quality surface-enhanced Raman scattering. Zhao H, Fu H, Zhao T, Wang L, Tan T. J Colloid Interface Sci; 2012 Jun 01; 375(1):30-4. PubMed ID: 22436726 [Abstract] [Full Text] [Related]
13. Synergy between graphene and Au nanoparticles (heterojunction) towards quenching, improving Raman signal, and UV light sensing. Dalfovo MC, Lacconi GI, Moreno M, Yappert MC, Sumanasekera GU, Salvarezza RC, Ibañez FJ. ACS Appl Mater Interfaces; 2014 May 14; 6(9):6384-91. PubMed ID: 24749787 [Abstract] [Full Text] [Related]
14. Designed CVD growth of graphene via process engineering. Yan K, Fu L, Peng H, Liu Z. Acc Chem Res; 2013 Oct 15; 46(10):2263-74. PubMed ID: 23869401 [Abstract] [Full Text] [Related]
15. Graphene networks anchored with sn@graphene as lithium ion battery anode. Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. ACS Nano; 2014 Feb 25; 8(2):1728-38. PubMed ID: 24400945 [Abstract] [Full Text] [Related]
16. Charge-selective surface-enhanced Raman scattering using silver and gold nanoparticles deposited on silicon-carbon core-shell nanowires. Baik SY, Cho YJ, Lim YR, Im HS, Jang DM, Myung Y, Park J, Kang HS. ACS Nano; 2012 Mar 27; 6(3):2459-70. PubMed ID: 22314252 [Abstract] [Full Text] [Related]
17. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene. Mhlanga N, Ntho TA, Chauke H, Sikhwivhilu L. Front Chem; 2022 Mar 27; 10():832282. PubMed ID: 35355787 [Abstract] [Full Text] [Related]
18. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Feng S, Dos Santos MC, Carvalho BR, Lv R, Li Q, Fujisawa K, Elías AL, Lei Y, Perea-López N, Endo M, Pan M, Pimenta MA, Terrones M. Sci Adv; 2016 Jul 27; 2(7):e1600322. PubMed ID: 27532043 [Abstract] [Full Text] [Related]
19. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering. Kim YK, Han SW, Min DH. ACS Appl Mater Interfaces; 2012 Dec 27; 4(12):6545-51. PubMed ID: 23143878 [Abstract] [Full Text] [Related]
20. Enhanced electrochemiluminescence sensing platform using nitrogen-doped graphene as a novel two-dimensional mat of silver nanoparticles. Du X, Jiang D, Liu Q, Qian J, Mao H, Wang K. Talanta; 2015 Jan 27; 132():146-9. PubMed ID: 25476291 [Abstract] [Full Text] [Related] Page: [Next] [New Search]