These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Near-Infrared Reflectance Spectroscopy (NIRS) assessment of δ(18)O and nitrogen and ash contents for improved yield potential and drought adaptation in maize. Cabrera-Bosquet L, Sánchez C, Rosales A, Palacios-Rojas N, Araus JL. J Agric Food Chem; 2011 Jan 26; 59(2):467-74. PubMed ID: 21175211 [Abstract] [Full Text] [Related]
4. How yield relates to ash content, Delta 13C and Delta 18O in maize grown under different water regimes. Cabrera-Bosquet L, Sánchez C, Araus JL. Ann Bot; 2009 Nov 26; 104(6):1207-16. PubMed ID: 19773272 [Abstract] [Full Text] [Related]
5. Leaf stable carbon isotope composition reflects transpiration efficiency in Zea mays. Twohey RJ, Roberts LM, Studer AJ. Plant J; 2019 Feb 26; 97(3):475-484. PubMed ID: 30351458 [Abstract] [Full Text] [Related]
6. Reduced root cortical cell file number improves drought tolerance in maize. Chimungu JG, Brown KM, Lynch JP. Plant Physiol; 2014 Dec 26; 166(4):1943-55. PubMed ID: 25355868 [Abstract] [Full Text] [Related]
7. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR. Mol Plant; 2012 Mar 26; 5(2):401-17. PubMed ID: 22180467 [Abstract] [Full Text] [Related]
8. Mechanisms of progressive water deficit tolerance and growth recovery of Chinese maize foundation genotypes Huangzao 4 and Chang 7-2, which are proposed on the basis of comparison of physiological and transcriptomic responses. Li Y, Sun C, Huang Z, Pan J, Wang L, Fan X. Plant Cell Physiol; 2009 Dec 26; 50(12):2092-111. PubMed ID: 19906836 [Abstract] [Full Text] [Related]
9. Using Thermography to Confirm Genotypic Variation for Drought Response in Maize. Casari RACN, Paiva DS, Silva VNB, Ferreira TMM, Souza Junior MT, Oliveira NG, Kobayashi AK, Molinari HBC, Santos TT, Gomide RL, Magalhães PC, Sousa CAF. Int J Mol Sci; 2019 May 08; 20(9):. PubMed ID: 31071964 [Abstract] [Full Text] [Related]
10. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. Killi D, Bussotti F, Raschi A, Haworth M. Physiol Plant; 2017 Feb 08; 159(2):130-147. PubMed ID: 27535211 [Abstract] [Full Text] [Related]
11. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize. Soderlund S, Owens FN, Fagan C. J Anim Sci; 2014 Jul 08; 92(7):2823-31. PubMed ID: 24496836 [Abstract] [Full Text] [Related]
12. The long way down--are carbon and oxygen isotope signals in the tree ring uncoupled from canopy physiological processes? Offermann C, Ferrio JP, Holst J, Grote R, Siegwolf R, Kayler Z, Gessler A. Tree Physiol; 2011 Oct 08; 31(10):1088-102. PubMed ID: 21957095 [Abstract] [Full Text] [Related]
13. Dual Δ¹³C/δ¹⁸O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Cabrera-Bosquet L, Albrizio R, Nogués S, Araus JL. Plant Cell Environ; 2011 Mar 08; 34(3):418-33. PubMed ID: 21062317 [Abstract] [Full Text] [Related]
14. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Prado SA, Cabrera-Bosquet L, Grau A, Coupel-Ledru A, Millet EJ, Welcker C, Tardieu F. Plant Cell Environ; 2018 Feb 08; 41(2):314-326. PubMed ID: 29044609 [Abstract] [Full Text] [Related]
15. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize. Avramova V, Meziane A, Bauer E, Blankenagel S, Eggels S, Gresset S, Grill E, Niculaes C, Ouzunova M, Poppenberger B, Presterl T, Rozhon W, Welcker C, Yang Z, Tardieu F, Schön CC. Theor Appl Genet; 2019 Jan 08; 132(1):53-63. PubMed ID: 30244394 [Abstract] [Full Text] [Related]
16. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield. Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, Araus JL, Cairns JE, Fernie AR. Plant Physiol; 2015 Dec 08; 169(4):2665-83. PubMed ID: 26424159 [Abstract] [Full Text] [Related]
17. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Parent B, Suard B, Serraj R, Tardieu F. Plant Cell Environ; 2010 Aug 01; 33(8):1256-67. PubMed ID: 20302604 [Abstract] [Full Text] [Related]
18. Xylem embolism and drought-induced stomatal closure in maize. Cochard H. Planta; 2002 Jul 01; 215(3):466-71. PubMed ID: 12111229 [Abstract] [Full Text] [Related]
19. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize. Zhan A, Schneider H, Lynch JP. Plant Physiol; 2015 Aug 01; 168(4):1603-15. PubMed ID: 26077764 [Abstract] [Full Text] [Related]
20. Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K, Schussler JR. Plant Biotechnol J; 2014 Aug 01; 12(6):685-93. PubMed ID: 24618117 [Abstract] [Full Text] [Related] Page: [Next] [New Search]