These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 26428297

  • 21. [Research Advances on Gliding-associated Proteins of Toxoplasma gondii].
    Li RH, Yin GR.
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2016 Oct; 34(5):463-7. PubMed ID: 30130043
    [Abstract] [Full Text] [Related]

  • 22. A novel family of Apicomplexan glideosome-associated proteins with an inner membrane-anchoring role.
    Bullen HE, Tonkin CJ, O'Donnell RA, Tham WH, Papenfuss AT, Gould S, Cowman AF, Crabb BS, Gilson PR.
    J Biol Chem; 2009 Sep 11; 284(37):25353-63. PubMed ID: 19561073
    [Abstract] [Full Text] [Related]

  • 23. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii.
    Soldati D, Dubremetz JF, Lebrun M.
    Int J Parasitol; 2001 Oct 11; 31(12):1293-302. PubMed ID: 11566297
    [Abstract] [Full Text] [Related]

  • 24. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites.
    Baum J, Richard D, Healer J, Rug M, Krnajski Z, Gilberger TW, Green JL, Holder AA, Cowman AF.
    J Biol Chem; 2006 Feb 24; 281(8):5197-208. PubMed ID: 16321976
    [Abstract] [Full Text] [Related]

  • 25. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.
    Kan A, Tan YH, Angrisano F, Hanssen E, Rogers KL, Whitehead L, Mollard VP, Cozijnsen A, Delves MJ, Crawford S, Sinden RE, McFadden GI, Leckie C, Bailey J, Baum J.
    Cell Microbiol; 2014 May 24; 16(5):734-50. PubMed ID: 24612056
    [Abstract] [Full Text] [Related]

  • 26. Mechanisms controlling glideosome function in apicomplexans.
    Daher W, Soldati-Favre D.
    Curr Opin Microbiol; 2009 Aug 24; 12(4):408-14. PubMed ID: 19577950
    [Abstract] [Full Text] [Related]

  • 27. Functional dissection of the apicomplexan glideosome molecular architecture.
    Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D.
    Cell Host Microbe; 2010 Oct 21; 8(4):343-57. PubMed ID: 20951968
    [Abstract] [Full Text] [Related]

  • 28. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites.
    Kappe S, Bruderer T, Gantt S, Fujioka H, Nussenzweig V, Ménard R.
    J Cell Biol; 1999 Nov 29; 147(5):937-44. PubMed ID: 10579715
    [Abstract] [Full Text] [Related]

  • 29. Intracellular parasite invasion strategies.
    Sibley LD.
    Science; 2004 Apr 09; 304(5668):248-53. PubMed ID: 15073368
    [Abstract] [Full Text] [Related]

  • 30. Origin and arrangement of actin filaments for gliding motility in apicomplexan parasites revealed by cryo-electron tomography.
    Martinez M, Mageswaran SK, Guérin A, Chen WD, Thompson CP, Chavin S, Soldati-Favre D, Striepen B, Chang YW.
    Nat Commun; 2023 Aug 09; 14(1):4800. PubMed ID: 37558667
    [Abstract] [Full Text] [Related]

  • 31. Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite Toxoplasma.
    Pavlou G, Touquet B, Vigetti L, Renesto P, Bougdour A, Debarre D, Balland M, Tardieux I.
    ACS Nano; 2020 Jun 23; 14(6):7121-7139. PubMed ID: 32432851
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii.
    Dobrowolski JM, Carruthers VB, Sibley LD.
    Mol Microbiol; 1997 Oct 23; 26(1):163-73. PubMed ID: 9383198
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion.
    Håkansson S, Morisaki H, Heuser J, Sibley LD.
    Mol Biol Cell; 1999 Nov 23; 10(11):3539-47. PubMed ID: 10564254
    [Abstract] [Full Text] [Related]

  • 36. TREP, a novel protein necessary for gliding motility of the malaria sporozoite.
    Combe A, Moreira C, Ackerman S, Thiberge S, Templeton TJ, Ménard R.
    Int J Parasitol; 2009 Mar 23; 39(4):489-96. PubMed ID: 19000911
    [Abstract] [Full Text] [Related]

  • 37. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.
    Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD.
    PLoS Pathog; 2011 Oct 23; 7(10):e1002280. PubMed ID: 21998582
    [Abstract] [Full Text] [Related]

  • 38. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?
    Kumpula EP, Kursula I.
    Acta Crystallogr F Struct Biol Commun; 2015 May 23; 71(Pt 5):500-13. PubMed ID: 25945702
    [Abstract] [Full Text] [Related]

  • 39. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization.
    Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T, Soldati D.
    Mol Biol Cell; 2000 Apr 23; 11(4):1385-400. PubMed ID: 10749937
    [Abstract] [Full Text] [Related]

  • 40. Gliding motility and cell invasion by Apicomplexa: insights from the Plasmodium sporozoite.
    Ménard R.
    Cell Microbiol; 2001 Feb 23; 3(2):63-73. PubMed ID: 11207621
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.