These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
159 related items for PubMed ID: 26432001
1. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. Pourahmad Jaktaji R, Pasand S. Gene; 2016 Jan 15; 576(1 Pt 1):115-8. PubMed ID: 26432001 [Abstract] [Full Text] [Related]
2. N-acetylcysteine blocks SOS induction and mutagenesis produced by fluoroquinolones in Escherichia coli. Rodríguez-Rosado AI, Valencia EY, Rodríguez-Rojas A, Costas C, Galhardo RS, Rodríguez-Beltrán J, Blázquez J. J Antimicrob Chemother; 2019 Aug 01; 74(8):2188-2196. PubMed ID: 31102529 [Abstract] [Full Text] [Related]
3. Opposing effects of aminocoumarins and fluoroquinolones on the SOS response and adaptability in Staphylococcus aureus. Schröder W, Goerke C, Wolz C. J Antimicrob Chemother; 2013 Mar 01; 68(3):529-38. PubMed ID: 23169893 [Abstract] [Full Text] [Related]
4. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. López E, Elez M, Matic I, Blázquez J. Mol Microbiol; 2007 Apr 01; 64(1):83-93. PubMed ID: 17376074 [Abstract] [Full Text] [Related]
5. Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Crane JK, Cheema MB, Olyer MA, Sutton MD. Front Cell Infect Microbiol; 2018 Apr 01; 8():410. PubMed ID: 30519543 [Abstract] [Full Text] [Related]
6. Sublethal concentrations of ciprofloxacin induce bacteriocin synthesis in Escherichia coli. Jerman B, Butala M, Zgur-Bertok D. Antimicrob Agents Chemother; 2005 Jul 01; 49(7):3087-90. PubMed ID: 15980407 [Abstract] [Full Text] [Related]
7. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. Cirz RT, Jones MB, Gingles NA, Minogue TD, Jarrahi B, Peterson SN, Romesberg FE. J Bacteriol; 2007 Jan 01; 189(2):531-9. PubMed ID: 17085555 [Abstract] [Full Text] [Related]
8. Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-use country. Christiansen N, Nielsen L, Jakobsen L, Stegger M, Hansen LH, Frimodt-Møller N. Microb Drug Resist; 2011 Sep 01; 17(3):395-406. PubMed ID: 21668371 [Abstract] [Full Text] [Related]
9. Mutational Consequences of Ciprofloxacin in Escherichia coli. Song LY, Goff M, Davidian C, Mao Z, London M, Lam K, Yung M, Miller JH. Antimicrob Agents Chemother; 2016 Oct 01; 60(10):6165-72. PubMed ID: 27480851 [Abstract] [Full Text] [Related]
10. Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. Briales A, Rodriguez-Martinez JM, Velasco C, Machuca J, Díaz de Alba P, Blazquez J, Pascual A. J Antimicrob Chemother; 2012 Dec 01; 67(12):2854-9. PubMed ID: 22915457 [Abstract] [Full Text] [Related]
11. De Novo Characterization of Genes That Contribute to High-Level Ciprofloxacin Resistance in Escherichia coli. Tran T, Ran Q, Ostrer L, Khodursky A. Antimicrob Agents Chemother; 2016 Oct 01; 60(10):6353-5. PubMed ID: 27431218 [Abstract] [Full Text] [Related]
12. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli. Bunnell BE, Escobar JF, Bair KL, Sutton MD, Crane JK. PLoS One; 2017 Oct 01; 12(5):e0178303. PubMed ID: 28542496 [Abstract] [Full Text] [Related]
15. Phenotypic changes in ciprofloxacin-resistant Staphylococcus aureus. Mesak LR, Davies J. Res Microbiol; 2009 Dec 01; 160(10):785-91. PubMed ID: 19818400 [Abstract] [Full Text] [Related]
16. Quinolone Resistance Reversion by Targeting the SOS Response. Recacha E, Machuca J, Díaz de Alba P, Ramos-Güelfo M, Docobo-Pérez F, Rodriguez-Beltrán J, Blázquez J, Pascual A, Rodríguez-Martínez JM. mBio; 2017 Oct 10; 8(5):. PubMed ID: 29018116 [Abstract] [Full Text] [Related]
17. Mutant prevention concentration of ciprofloxacin and enrofloxacin against Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa. Pasquali F, Manfreda G. Vet Microbiol; 2007 Jan 31; 119(2-4):304-10. PubMed ID: 16987619 [Abstract] [Full Text] [Related]
18. Heterogeneity of SOS response expression in clinical isolates of Escherichia coli influences adaptation to antimicrobial stress. Diaz-Diaz S, Garcia-Montaner A, Vanni R, Murillo-Torres M, Recacha E, Pulido MR, Romero-Muñoz M, Docobo-Pérez F, Pascual A, Rodriguez-Martinez JM. Drug Resist Updat; 2024 Jul 31; 75():101087. PubMed ID: 38678745 [Abstract] [Full Text] [Related]
19. Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli. Händel N, Hoeksema M, Freijo Mata M, Brul S, ter Kuile BH. Antimicrob Agents Chemother; 2015 Dec 14; 60(3):1319-27. PubMed ID: 26666928 [Abstract] [Full Text] [Related]
20. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. Pribis JP, García-Villada L, Zhai Y, Lewin-Epstein O, Wang AZ, Liu J, Xia J, Mei Q, Fitzgerald DM, Bos J, Austin RH, Herman C, Bates D, Hadany L, Hastings PJ, Rosenberg SM. Mol Cell; 2019 May 16; 74(4):785-800.e7. PubMed ID: 30948267 [Abstract] [Full Text] [Related] Page: [Next] [New Search]