These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 26433358

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Steel foundry electric arc furnace dust management: stabilization by using lime and Portland cement.
    Salihoglu G, Pinarli V.
    J Hazard Mater; 2008 May 30; 153(3):1110-6. PubMed ID: 17977656
    [Abstract] [Full Text] [Related]

  • 4. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite.
    Khanmohammadi Hazaveh P, Karimi S, Rashchi F, Sheibani S.
    Ecotoxicol Environ Saf; 2020 Oct 01; 202():110893. PubMed ID: 32615495
    [Abstract] [Full Text] [Related]

  • 5. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust.
    Fernández-Olmo I, Lasa C, Irabien A.
    J Hazard Mater; 2007 Jun 18; 144(3):720-4. PubMed ID: 17324503
    [Abstract] [Full Text] [Related]

  • 6. Chemical, physical, structural and morphological characterization of the electric arc furnace dust.
    Machado JG, Brehm FA, Moraes CA, Santos CA, Vilela AC, Cunha JB.
    J Hazard Mater; 2006 Aug 25; 136(3):953-60. PubMed ID: 16494997
    [Abstract] [Full Text] [Related]

  • 7. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.
    Tsakiridis PE, Oustadakis P, Katsiapi A, Agatzini-Leonardou S.
    J Hazard Mater; 2010 Jul 15; 179(1-3):8-14. PubMed ID: 20434263
    [Abstract] [Full Text] [Related]

  • 8. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH.
    Park SM, Yoo JC, Ji SW, Yang JS, Baek K.
    Environ Sci Pollut Res Int; 2015 Feb 15; 22(4):3013-22. PubMed ID: 25231736
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Investigation into the use of cement kiln dust in high density sludge (HDS) treatment of acid mine water.
    Mackie AL, Walsh ME.
    Water Res; 2015 Nov 15; 85():443-50. PubMed ID: 26372742
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent.
    Mackie AL, Walsh ME.
    Water Res; 2012 Feb 01; 46(2):327-34. PubMed ID: 22133839
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium.
    Youcai Z, Stanforth R.
    J Hazard Mater; 2000 Dec 30; 80(1-3):223-40. PubMed ID: 11080580
    [Abstract] [Full Text] [Related]

  • 18. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust.
    Pickles CA.
    J Hazard Mater; 2010 Jul 15; 179(1-3):309-17. PubMed ID: 20356673
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol.
    Wu ZJ, Huang W, Cui KK, Gao ZF, Wang P.
    J Hazard Mater; 2014 Aug 15; 278():91-9. PubMed ID: 24953940
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.