These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


337 related items for PubMed ID: 26434527

  • 1. A detailed study of homogeneous agarose/hydroxyapatite nanocomposites for load-bearing bone tissue.
    Hu J, Zhu Y, Tong H, Shen X, Chen L, Ran J.
    Int J Biol Macromol; 2016 Jan; 82():134-43. PubMed ID: 26434527
    [Abstract] [Full Text] [Related]

  • 2. Chitosan-nanohydroxyapatite composites: mechanical, thermal and bio-compatibility studies.
    Roy P, Sailaja RR.
    Int J Biol Macromol; 2015 Feb; 73():170-81. PubMed ID: 25475846
    [Abstract] [Full Text] [Related]

  • 3. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.
    Garai S, Sinha A.
    Colloids Surf B Biointerfaces; 2014 Mar 01; 115():182-90. PubMed ID: 24342800
    [Abstract] [Full Text] [Related]

  • 4. In-situ hybridization of calcium silicate and hydroxyapatite-gelatin nanocomposites enhances physical property and in vitro osteogenesis.
    Chiu CK, Lee DJ, Chen H, Chow LC, Ko CC.
    J Mater Sci Mater Med; 2015 Feb 01; 26(2):92. PubMed ID: 25649517
    [Abstract] [Full Text] [Related]

  • 5. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 6. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.
    Mohamed KR, Beherei HH, El Bassyouni GT, El Mahallawy N.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 08; 33(7):4126-32. PubMed ID: 23910323
    [Abstract] [Full Text] [Related]

  • 7. Development of nanohydroxyapatite/polycarbonate composite for bone repair.
    Liao Jianguo, Zhang Li, Zuo Yi, Wang Huanan, Li Jidong, Zou Qin, Li Yubao.
    J Biomater Appl; 2009 Jul 08; 24(1):31-45. PubMed ID: 19386668
    [Abstract] [Full Text] [Related]

  • 8. Carbon Nanotube Reinforced Hydroxyapatite Nanocomposites As Bone Implants: Nanostructure, Mechanical Strength And Biocompatibility.
    Lawton K, Le H, Tredwin C, Handy RD.
    Int J Nanomedicine; 2019 Jul 08; 14():7947-7962. PubMed ID: 31632010
    [Abstract] [Full Text] [Related]

  • 9. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering.
    Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S.
    Int J Biol Macromol; 2016 Dec 08; 93(Pt A):276-289. PubMed ID: 27543347
    [Abstract] [Full Text] [Related]

  • 10. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S, Çakmak AS, Gümüşderelioğlu M.
    Biomed Mater; 2013 Aug 08; 8(4):045014. PubMed ID: 23860136
    [Abstract] [Full Text] [Related]

  • 11. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.
    Kolanthai E, Abinaya Sindu P, Thanigai Arul K, Sarath Chandra V, Manikandan E, Narayana Kalkura S.
    J Photochem Photobiol B; 2017 Jan 08; 166():220-231. PubMed ID: 28012416
    [Abstract] [Full Text] [Related]

  • 12. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes.
    Zhang L, Rodriguez J, Raez J, Myles AJ, Fenniri H, Webster TJ.
    Nanotechnology; 2009 Apr 29; 20(17):175101. PubMed ID: 19420581
    [Abstract] [Full Text] [Related]

  • 13. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications.
    Ain QU, Khan AN, Nabavinia M, Mujahid M.
    Mater Sci Eng C Mater Biol Appl; 2017 Jun 01; 75():807-815. PubMed ID: 28415533
    [Abstract] [Full Text] [Related]

  • 14. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications.
    Hickey DJ, Ercan B, Sun L, Webster TJ.
    Acta Biomater; 2015 Mar 01; 14():175-84. PubMed ID: 25523875
    [Abstract] [Full Text] [Related]

  • 15. Synthesis and characterization of chitosan-multiwalled carbon nanotubes/hydroxyapatite nanocomposites for bone tissue engineering.
    Chen L, Hu J, Shen X, Tong H.
    J Mater Sci Mater Med; 2013 Aug 01; 24(8):1843-51. PubMed ID: 23712535
    [Abstract] [Full Text] [Related]

  • 16. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J, Xiong J, Liu J, Zhu W, Chen J, Duan L, Zhang J, Wang D.
    Biomed Mater Eng; 2015 Aug 01; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [Abstract] [Full Text] [Related]

  • 17. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.
    Fan X, Ren H, Luo X, Wang P, Lv G, Yuan H, Li H, Yan Y.
    J Biomater Appl; 2016 Mar 01; 30(8):1261-72. PubMed ID: 26635202
    [Abstract] [Full Text] [Related]

  • 18. [Development of nanohydroxyapatite composites as bone grafting materials].
    Wang R, Wen D, Xie X, Zhong Y.
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct 01; 25(5):1231-4. PubMed ID: 19024483
    [Abstract] [Full Text] [Related]

  • 19. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects.
    Anitha A, Joseph J, Menon D, Nair SV, Nair MB.
    Tissue Eng Part A; 2017 Apr 01; 23(7-8):345-358. PubMed ID: 28093043
    [Abstract] [Full Text] [Related]

  • 20. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W, Li X, Zhou S, Weng J.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):831-41. PubMed ID: 17326137
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.