These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 26437747

  • 1. Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction.
    Tian H.
    ChemSusChem; 2015 Nov; 8(22):3746-59. PubMed ID: 26437747
    [Abstract] [Full Text] [Related]

  • 2. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS, Kornienko N, Margarit CG, Yang P, Chang CJ.
    J Am Chem Soc; 2013 Sep 25; 135(38):14413-24. PubMed ID: 24033186
    [Abstract] [Full Text] [Related]

  • 3. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction.
    Ji Z, He M, Huang Z, Ozkan U, Wu Y.
    J Am Chem Soc; 2013 Aug 14; 135(32):11696-9. PubMed ID: 23895560
    [Abstract] [Full Text] [Related]

  • 4. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO2 Conversion to Fuels and Feedstocks.
    Cohen KY, Evans R, Dulovic S, Bocarsly AB.
    Acc Chem Res; 2022 Apr 05; 55(7):944-954. PubMed ID: 35290017
    [Abstract] [Full Text] [Related]

  • 5. Photoelectrochemical reduction of CO(2) in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex.
    Arai T, Sato S, Uemura K, Morikawa T, Kajino T, Motohiro T.
    Chem Commun (Camb); 2010 Oct 07; 46(37):6944-6. PubMed ID: 20730225
    [Abstract] [Full Text] [Related]

  • 6. Electrochemical water oxidation with carbon-grafted iridium complexes.
    deKrafft KE, Wang C, Xie Z, Su X, Hinds BJ, Lin W.
    ACS Appl Mater Interfaces; 2012 Feb 07; 4(2):608-13. PubMed ID: 22292527
    [Abstract] [Full Text] [Related]

  • 7. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ, Gregoire JM, Luca OR.
    J Photochem Photobiol B; 2015 Nov 07; 152(Pt A):47-57. PubMed ID: 25596654
    [Abstract] [Full Text] [Related]

  • 8. Molecular water-oxidation catalysts for photoelectrochemical cells.
    Brimblecombe R, Dismukes GC, Swiegers GF, Spiccia L.
    Dalton Trans; 2009 Nov 21; (43):9374-84. PubMed ID: 19859588
    [Abstract] [Full Text] [Related]

  • 9. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C, Robert M, Savéant JM.
    Acc Chem Res; 2015 Dec 15; 48(12):2996-3006. PubMed ID: 26559053
    [Abstract] [Full Text] [Related]

  • 10. Visible-light Homogeneous Photocatalytic Conversion of CO2 into CO in Aqueous Solutions with an Iron Catalyst.
    Rao H, Bonin J, Robert M.
    ChemSusChem; 2017 Nov 23; 10(22):4447-4450. PubMed ID: 28862388
    [Abstract] [Full Text] [Related]

  • 11. Solar Panel Technologies for Light-to-Chemical Conversion.
    Andrei V, Wang Q, Uekert T, Bhattacharjee S, Reisner E.
    Acc Chem Res; 2022 Dec 06; 55(23):3376-3386. PubMed ID: 36395337
    [Abstract] [Full Text] [Related]

  • 12. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A, Anderlund M, Johansson O, Lindblad P, Lomoth R, Polivka T, Ott S, Stensjö K, Styring S, Sundström V, Hammarström L.
    Acc Chem Res; 2009 Dec 21; 42(12):1899-909. PubMed ID: 19757805
    [Abstract] [Full Text] [Related]

  • 13. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y, Tran PD, Boix P, Ren Y, Chiam SY, Li Z, Fu K, Wong LH, Barber J.
    ACS Nano; 2015 Apr 28; 9(4):3829-36. PubMed ID: 25801437
    [Abstract] [Full Text] [Related]

  • 14. Covalently Grafting Graphene onto Si Photocathode to Expedite Aqueous Photoelectrochemical CO2 Reduction.
    Wei Z, Su Y, Pan W, Shen J, Fan R, Yang W, Deng Z, Shen M, Peng Y.
    Angew Chem Int Ed Engl; 2023 Jul 10; 62(28):e202305558. PubMed ID: 37173611
    [Abstract] [Full Text] [Related]

  • 15. Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction.
    Schreier M, Luo J, Gao P, Moehl T, Mayer MT, Grätzel M.
    J Am Chem Soc; 2016 Feb 17; 138(6):1938-46. PubMed ID: 26804626
    [Abstract] [Full Text] [Related]

  • 16. Using Surface Amide Couplings to Assemble Photocathodes for Solar Fuel Production Applications.
    Materna KL, Lalaoui N, Laureanti JA, Walsh AP, Rimgard BP, Lomoth R, Thapper A, Ott S, Shaw WJ, Tian H, Hammarström L.
    ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4501-4509. PubMed ID: 31872996
    [Abstract] [Full Text] [Related]

  • 17. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H, Masuda T, Ye J.
    Chem Asian J; 2018 Jan 18; 13(2):127-142. PubMed ID: 29193762
    [Abstract] [Full Text] [Related]

  • 18. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.
    Xue LX, Meng TT, Yang W, Wang KZ.
    J Photochem Photobiol B; 2015 Nov 18; 152(Pt A):95-105. PubMed ID: 26164739
    [Abstract] [Full Text] [Related]

  • 19. Aqueous CO2 Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes.
    Wen Z, Xu S, Zhu Y, Liu G, Gao H, Sun L, Li F.
    Angew Chem Int Ed Engl; 2022 Jun 13; 61(24):e202201086. PubMed ID: 35225405
    [Abstract] [Full Text] [Related]

  • 20. Making oxygen with ruthenium complexes.
    Concepcion JJ, Jurss JW, Brennaman MK, Hoertz PG, Patrocinio AO, Murakami Iha NY, Templeton JL, Meyer TJ.
    Acc Chem Res; 2009 Dec 21; 42(12):1954-65. PubMed ID: 19817345
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.