These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


446 related items for PubMed ID: 26438498

  • 1. Complex Regulation Pathways of AmpC-Mediated β-Lactam Resistance in Enterobacter cloacae Complex.
    Guérin F, Isnard C, Cattoir V, Giard JC.
    Antimicrob Agents Chemother; 2015 Dec; 59(12):7753-61. PubMed ID: 26438498
    [Abstract] [Full Text] [Related]

  • 2. Expression of AmpC beta-lactamase in Enterobacter cloacae isolated from retail ground beef, cattle farm and processing facilities.
    Kim SH, Wei CI.
    J Appl Microbiol; 2007 Aug; 103(2):400-8. PubMed ID: 17650200
    [Abstract] [Full Text] [Related]

  • 3. Role of Pseudomonas aeruginosa low-molecular-mass penicillin-binding proteins in AmpC expression, β-lactam resistance, and peptidoglycan structure.
    Ropy A, Cabot G, Sánchez-Diener I, Aguilera C, Moya B, Ayala JA, Oliver A.
    Antimicrob Agents Chemother; 2015 Jul; 59(7):3925-34. PubMed ID: 25896695
    [Abstract] [Full Text] [Related]

  • 4. [Beta-lactam resistance in aquatic Enterobacter cloacae strains using phenotypic and genotypic criteria].
    Lazăr V, Cernat R, Balotescu C, Cotar A, Coipan E, Cojocaru C.
    Bacteriol Virusol Parazitol Epidemiol; 2002 Jul; 47(3-4):185-91. PubMed ID: 15085610
    [Abstract] [Full Text] [Related]

  • 5. Gene mutations responsible for overexpression of AmpC beta-lactamase in some clinical isolates of Enterobacter cloacae.
    Kaneko K, Okamoto R, Nakano R, Kawakami S, Inoue M.
    J Clin Microbiol; 2005 Jun; 43(6):2955-8. PubMed ID: 15956430
    [Abstract] [Full Text] [Related]

  • 6. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
    Zamorano L, Reeve TM, Deng L, Juan C, Moyá B, Cabot G, Vocadlo DJ, Mark BL, Oliver A.
    Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764
    [Abstract] [Full Text] [Related]

  • 7. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Pseudomonas aeruginosa.
    Gyger J, Torrens G, Cava F, Bernhardt TG, Fumeaux C.
    mBio; 2024 Jul 17; 15(7):e0141924. PubMed ID: 38920394
    [Abstract] [Full Text] [Related]

  • 8. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa.
    Cavallari JF, Lamers RP, Scheurwater EM, Matos AL, Burrows LL.
    Antimicrob Agents Chemother; 2013 Jul 17; 57(7):3078-84. PubMed ID: 23612194
    [Abstract] [Full Text] [Related]

  • 9. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate.
    Barnaud G, Labia R, Raskine L, Sanson-Le Pors MJ, Philippon A, Arlet G.
    FEMS Microbiol Lett; 2001 Feb 20; 195(2):185-90. PubMed ID: 11179650
    [Abstract] [Full Text] [Related]

  • 10. In vivo reversion to the wild-type beta-lactam resistance phenotype mediated by a plasmid carrying ampR and qnrA1 in Enterobacter cloacae.
    González-López JJ, Sabaté M, Lavilla S, Larrosa MN, Bartolomé RM, Prats G.
    Antimicrob Agents Chemother; 2006 Sep 20; 50(9):3175-8. PubMed ID: 16940123
    [Abstract] [Full Text] [Related]

  • 11. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains.
    Zamorano L, Reeve TM, Juan C, Moyá B, Cabot G, Vocadlo DJ, Mark BL, Oliver A.
    Antimicrob Agents Chemother; 2011 May 20; 55(5):1990-6. PubMed ID: 21357303
    [Abstract] [Full Text] [Related]

  • 12. Elevating NagZ Improves Resistance to β-Lactam Antibiotics via Promoting AmpC β-Lactamase in Enterobacter cloacae.
    Yang X, Zeng J, Zhou Q, Yu X, Zhong Y, Wang F, Du H, Nie F, Pang X, Wang D, Fan Y, Bai T, Xu Y.
    Front Microbiol; 2020 May 20; 11():586729. PubMed ID: 33250874
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. NagZ-dependent and NagZ-independent mechanisms for β-lactamase expression in Stenotrophomonas maltophilia.
    Huang YW, Hu RM, Lin CW, Chung TC, Yang TC.
    Antimicrob Agents Chemother; 2012 Apr 20; 56(4):1936-41. PubMed ID: 22252801
    [Abstract] [Full Text] [Related]

  • 16. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
    Asgarali A, Stubbs KA, Oliver A, Vocadlo DJ, Mark BL.
    Antimicrob Agents Chemother; 2009 Jun 20; 53(6):2274-82. PubMed ID: 19273679
    [Abstract] [Full Text] [Related]

  • 17. Emergence of VIM-12 in Enterobacter cloacae.
    Panopoulou M, Alepopoulou E, Ikonomidis A, Grapsa A, Paspalidou E, Kartali-Ktenidou S.
    J Clin Microbiol; 2010 Sep 20; 48(9):3414-5. PubMed ID: 20592145
    [Abstract] [Full Text] [Related]

  • 18. In vivo functional and molecular characterization of the Penicillin-Binding Protein 4 (DacB) of Pseudomonas aeruginosa.
    Aguilera Rossi CG, Gómez-Puertas P, Ayala Serrano JA.
    BMC Microbiol; 2016 Oct 06; 16(1):234. PubMed ID: 27716106
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.