These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 2644239
1. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli. Zhu Y, Lin EC. J Bacteriol; 1989 Feb; 171(2):862-7. PubMed ID: 2644239 [Abstract] [Full Text] [Related]
2. Loss of aldehyde dehydrogenase in an Escherichia coli mutant selected for growth on the rare sugar L-galactose. Zhu Y, Lin EC. J Bacteriol; 1987 Feb; 169(2):785-9. PubMed ID: 3542971 [Abstract] [Full Text] [Related]
3. Evolution of L-1, 2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-fucose and L-lactate metabolism. Cocks GT, Aguilar T, Lin EC. J Bacteriol; 1974 Apr; 118(1):83-8. PubMed ID: 4595205 [Abstract] [Full Text] [Related]
4. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. Hacking AJ, Lin EC. J Bacteriol; 1976 Jun; 126(3):1166-72. PubMed ID: 181364 [Abstract] [Full Text] [Related]
5. Metabolism of L-fucose and L-rhamnose in Escherichia coli: aerobic-anaerobic regulation of L-lactaldehyde dissimilation. Baldomà L, Aguilar J. J Bacteriol; 1988 Jan; 170(1):416-21. PubMed ID: 3275622 [Abstract] [Full Text] [Related]
8. Evolution of propanediol utilization in Escherichia coli: mutant with improved substrate-scavenging power. Hacking AJ, Aguilar J, Lin EC. J Bacteriol; 1978 Nov; 136(2):522-30. PubMed ID: 361712 [Abstract] [Full Text] [Related]
9. Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. Chen YM, Lu Z, Lin EC. J Bacteriol; 1989 Nov; 171(11):6097-105. PubMed ID: 2553671 [Abstract] [Full Text] [Related]
10. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli. Chen YM, Zhu Y, Lin EC. J Bacteriol; 1987 Jul; 169(7):3289-94. PubMed ID: 3298215 [Abstract] [Full Text] [Related]
11. Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions. Millard P, Pérochon J, Létisse F. Appl Environ Microbiol; 2021 Jul 27; 87(16):e0071921. PubMed ID: 34047632 [Abstract] [Full Text] [Related]
12. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli. Chen YM, Tobin JF, Zhu Y, Schleif RF, Lin EC. J Bacteriol; 1987 Aug 27; 169(8):3712-9. PubMed ID: 3301811 [Abstract] [Full Text] [Related]
17. Crystal structure of an iron-dependent group III dehydrogenase that interconverts L-lactaldehyde and L-1,2-propanediol in Escherichia coli. Montella C, Bellsolell L, Pérez-Luque R, Badía J, Baldoma L, Coll M, Aguilar J. J Bacteriol; 2005 Jul 27; 187(14):4957-66. PubMed ID: 15995211 [Abstract] [Full Text] [Related]
18. Post-transcriptional control of L-1,2-propanediol oxidoreductase in the L-fucose pathway of Escherichia coli K-12. Chen YM, Lin EC. J Bacteriol; 1984 Jan 27; 157(1):341-4. PubMed ID: 6418721 [Abstract] [Full Text] [Related]
19. Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli. Chen YM, Lin EC. J Bacteriol; 1984 Mar 27; 157(3):828-32. PubMed ID: 6421801 [Abstract] [Full Text] [Related]
20. Experimental evolution of propanediol oxidoreductase in Escherichia coli. Comparative analysis of the wild-type and mutant enzymes. Boronat A, Aguilar J. Biochim Biophys Acta; 1981 Jan 07; 672(1):98-107. PubMed ID: 7011418 [Abstract] [Full Text] [Related] Page: [Next] [New Search]