These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


286 related items for PubMed ID: 26446692

  • 1. Edge-mediated skyrmion chain and its collective dynamics in a confined geometry.
    Du H, Che R, Kong L, Zhao X, Jin C, Wang C, Yang J, Ning W, Li R, Jin C, Chen X, Zang J, Zhang Y, Tian M.
    Nat Commun; 2015 Oct 08; 6():8504. PubMed ID: 26446692
    [Abstract] [Full Text] [Related]

  • 2. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe.
    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H, Yao Y, Wu G, Zhang XX, Wang W.
    Nano Lett; 2018 Feb 14; 18(2):1274-1279. PubMed ID: 29299928
    [Abstract] [Full Text] [Related]

  • 3. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks.
    Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R, Zhang Y.
    Proc Natl Acad Sci U S A; 2016 May 03; 113(18):4918-23. PubMed ID: 27051067
    [Abstract] [Full Text] [Related]

  • 4. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions.
    Stolt MJ, Li ZA, Phillips B, Song D, Mathur N, Dunin-Borkowski RE, Jin S.
    Nano Lett; 2017 Jan 11; 17(1):508-514. PubMed ID: 27936792
    [Abstract] [Full Text] [Related]

  • 5. Interaction of Individual Skyrmions in a Nanostructured Cubic Chiral Magnet.
    Du H, Zhao X, Rybakov FN, Borisov AB, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev NS, Zhang Y, Che R, Blügel S, Tian M.
    Phys Rev Lett; 2018 May 11; 120(19):197203. PubMed ID: 29799255
    [Abstract] [Full Text] [Related]

  • 6. Control of morphology and formation of highly geometrically confined magnetic skyrmions.
    Jin C, Li ZA, Kovács A, Caron J, Zheng F, Rybakov FN, Kiselev NS, Du H, Blügel S, Tian M, Zhang Y, Farle M, Dunin-Borkowski RE.
    Nat Commun; 2017 Jun 05; 8():15569. PubMed ID: 28580935
    [Abstract] [Full Text] [Related]

  • 7. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy.
    Rajeswari J, Huang P, Mancini GF, Murooka Y, Latychevskaia T, McGrouther D, Cantoni M, Baldini E, White JS, Magrez A, Giamarchi T, Rønnow HM, Carbone F.
    Proc Natl Acad Sci U S A; 2015 Nov 17; 112(46):14212-7. PubMed ID: 26578765
    [Abstract] [Full Text] [Related]

  • 8. Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet.
    Wang C, Du H, Zhao X, Jin C, Tian M, Zhang Y, Che R.
    Nano Lett; 2017 May 10; 17(5):2921-2927. PubMed ID: 28350960
    [Abstract] [Full Text] [Related]

  • 9. Confinement of Skyrmions in Nanoscale FeGe Device-like Structures.
    Twitchett-Harrison AC, Loudon JC, Pepper RA, Birch MT, Fangohr H, Midgley PA, Balakrishnan G, Hatton PD.
    ACS Appl Electron Mater; 2022 Sep 27; 4(9):4427-4437. PubMed ID: 36185075
    [Abstract] [Full Text] [Related]

  • 10. Steady motion of 80-nm-size skyrmions in a 100-nm-wide track.
    Song D, Wang W, Zhang S, Liu Y, Wang N, Zheng F, Tian M, Dunin-Borkowski RE, Zang J, Du H.
    Nat Commun; 2024 Jul 04; 15(1):5614. PubMed ID: 38965221
    [Abstract] [Full Text] [Related]

  • 11. Real-space imaging of confined magnetic skyrmion tubes.
    Birch MT, Cortés-Ortuño D, Turnbull LA, Wilson MN, Groß F, Träger N, Laurenson A, Bukin N, Moody SH, Weigand M, Schütz G, Popescu H, Fan R, Steadman P, Verezhak JAT, Balakrishnan G, Loudon JC, Twitchett-Harrison AC, Hovorka O, Fangohr H, Ogrin FY, Gräfe J, Hatton PD.
    Nat Commun; 2020 Apr 07; 11(1):1726. PubMed ID: 32265449
    [Abstract] [Full Text] [Related]

  • 12. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory.
    Zhang X, Zhao GP, Fangohr H, Liu JP, Xia WX, Xia J, Morvan FJ.
    Sci Rep; 2015 Jan 06; 5():7643. PubMed ID: 25560935
    [Abstract] [Full Text] [Related]

  • 13. Edge states and skyrmion dynamics in nanostripes of frustrated magnets.
    Leonov AO, Mostovoy M.
    Nat Commun; 2017 Feb 27; 8():14394. PubMed ID: 28240226
    [Abstract] [Full Text] [Related]

  • 14. Magnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography.
    Li ZA, Zheng F, Tavabi AH, Caron J, Jin C, Du H, Kovács A, Tian M, Farle M, Dunin-Borkowski RE.
    Nano Lett; 2017 Mar 08; 17(3):1395-1401. PubMed ID: 28125235
    [Abstract] [Full Text] [Related]

  • 15. Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}.
    Müller J, Rajeswari J, Huang P, Murooka Y, Rønnow HM, Carbone F, Rosch A.
    Phys Rev Lett; 2017 Sep 29; 119(13):137201. PubMed ID: 29341720
    [Abstract] [Full Text] [Related]

  • 16. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
    Matsumoto T, So YG, Kohno Y, Sawada H, Ikuhara Y, Shibata N.
    Sci Adv; 2016 Feb 29; 2(2):e1501280. PubMed ID: 26933690
    [Abstract] [Full Text] [Related]

  • 17. Relaxation Dynamics of Zero-Field Skyrmions over a Wide Temperature Range.
    Peng L, Zhang Y, Ke L, Kim TH, Zheng Q, Yan J, Zhang XG, Gao Y, Wang S, Cai J, Shen B, McQueeney RJ, Kaminski A, Kramer MJ, Zhou L.
    Nano Lett; 2018 Dec 12; 18(12):7777-7783. PubMed ID: 30499678
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Current-Induced Magnetic Skyrmions with Controllable Polarities in the Helical Phase.
    Zhao X, Tang J, Pei K, Wang W, Lin SZ, Du H, Tian M, Che R.
    Nano Lett; 2022 Nov 23; 22(22):8793-8800. PubMed ID: 36331209
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.