These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
437 related items for PubMed ID: 26446710
1. Synthesis of an arrayed sgRNA library targeting the human genome. Schmidt T, Schmid-Burgk JL, Hornung V. Sci Rep; 2015 Oct 08; 5():14987. PubMed ID: 26446710 [Abstract] [Full Text] [Related]
2. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Laughery MF, Hunter T, Brown A, Hoopes J, Ostbye T, Shumaker T, Wyrick JJ. Yeast; 2015 Dec 08; 32(12):711-20. PubMed ID: 26305040 [Abstract] [Full Text] [Related]
3. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. Prykhozhij SV, Rajan V, Gaston D, Berman JN. PLoS One; 2015 Dec 08; 10(3):e0119372. PubMed ID: 25742428 [Abstract] [Full Text] [Related]
4. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering. Ui-Tei K, Maruyama S, Nakano Y. Genome; 2017 Jun 08; 60(6):537-545. PubMed ID: 28177825 [Abstract] [Full Text] [Related]
9. A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells. Zhang H, Zhang X, Fan C, Xie Q, Xu C, Zhao Q, Liu Y, Wu X, Zhang H. Biochem Biophys Res Commun; 2016 Mar 18; 471(4):528-32. PubMed ID: 26879140 [Abstract] [Full Text] [Related]
10. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X, Wang H, Cao S, Zhou Q, Zhao J. Sci Rep; 2015 Aug 21; 5():13348. PubMed ID: 26293209 [Abstract] [Full Text] [Related]
11. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency. Hiranniramol K, Chen Y, Liu W, Wang X. Bioinformatics; 2020 May 01; 36(9):2684-2689. PubMed ID: 31971562 [Abstract] [Full Text] [Related]
13. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. Nat Biotechnol; 2015 Sep 01; 33(9):985-989. PubMed ID: 26121415 [Abstract] [Full Text] [Related]
14. GUIDES: sgRNA design for loss-of-function screens. Meier JA, Zhang F, Sanjana NE. Nat Methods; 2017 Aug 31; 14(9):831-832. PubMed ID: 28858339 [No Abstract] [Full Text] [Related]
15. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA. Wu D, Guan X, Zhu Y, Ren K, Huang Z. Cell Res; 2017 May 31; 27(5):705-708. PubMed ID: 28374750 [No Abstract] [Full Text] [Related]
16. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Fu Y, Reyon D, Joung JK. Methods Enzymol; 2014 May 31; 546():21-45. PubMed ID: 25398334 [Abstract] [Full Text] [Related]
19. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y. Mol Cell; 2017 Jan 19; 65(2):310-322. PubMed ID: 27989439 [Abstract] [Full Text] [Related]