These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
404 related items for PubMed ID: 26449440
21. Amorphous V-O-C composite nanofibers electrospun from solution precursors as binder- and conductive additive-free electrodes for supercapacitors with outstanding performance. Chen X, Zhao B, Cai Y, Tadé MO, Shao Z. Nanoscale; 2013 Dec 21; 5(24):12589-97. PubMed ID: 24177752 [Abstract] [Full Text] [Related]
23. In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices. Abbas Z, Hussain N, Kumar S, Mobin SM. Nanoscale; 2024 Jan 03; 16(2):868-878. PubMed ID: 38099850 [Abstract] [Full Text] [Related]
24. Rational design of one-dimensional skin-core multilayer structure for electrospun carbon nanofibers with bicontinuous electron/ion transport toward high-performance supercapacitors. Wang G, Hu G, Lan J, Miao F, Zhang P, Shao G. J Colloid Interface Sci; 2024 Jan 03; 653(Pt A):148-158. PubMed ID: 37713913 [Abstract] [Full Text] [Related]
26. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density. Zhao L, Qiu Y, Yu J, Deng X, Dai C, Bai X. Nanoscale; 2013 Jun 07; 5(11):4902-9. PubMed ID: 23624805 [Abstract] [Full Text] [Related]
27. Wearable Solid-State Supercapacitors Operating at High Working Voltage with a Flexible Nanocomposite Electrode. Li X, Wang J, Zhao Y, Ge F, Komarneni S, Cai Z. ACS Appl Mater Interfaces; 2016 Oct 05; 8(39):25905-25914. PubMed ID: 27618744 [Abstract] [Full Text] [Related]
28. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density. Liu Y, Liu Q, Wang L, Yang X, Yang W, Zheng J, Hou H. ACS Appl Mater Interfaces; 2020 Jan 29; 12(4):4777-4786. PubMed ID: 31898452 [Abstract] [Full Text] [Related]
29. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors. Sami SK, Siddiqui S, Shrivastava S, Lee NE, Chung CH. Small; 2017 Dec 29; 13(46):. PubMed ID: 29045044 [Abstract] [Full Text] [Related]
30. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. Karnan M, Subramani K, Sudhan N, Ilayaraja N, Sathish M. ACS Appl Mater Interfaces; 2016 Dec 28; 8(51):35191-35202. PubMed ID: 27977134 [Abstract] [Full Text] [Related]
31. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Luo QP, Huang L, Gao X, Cheng Y, Yao B, Hu Z, Wan J, Xiao X, Zhou J. Nanotechnology; 2015 Jul 31; 26(30):304004. PubMed ID: 26152815 [Abstract] [Full Text] [Related]
32. A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Liang Q, Ye L, Huang ZH, Xu Q, Bai Y, Kang F, Yang QH. Nanoscale; 2014 Nov 21; 6(22):13831-7. PubMed ID: 25300494 [Abstract] [Full Text] [Related]
33. Transition Metal Ions Enable the Transition from Electrospun Prolamin Protein Fibers to Nitrogen-Doped Freestanding Carbon Films for Flexible Supercapacitors. Wang Y, Yang J, Du R, Chen L. ACS Appl Mater Interfaces; 2017 Jul 19; 9(28):23731-23740. PubMed ID: 28661126 [Abstract] [Full Text] [Related]
34. Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. Bai Z, Liu S, Chen P, Cheng G, Wu G, Li H, Liu Y. Nanotechnology; 2020 Jul 24; 31(30):305705. PubMed ID: 32235076 [Abstract] [Full Text] [Related]
36. Hazardous Petroleum Sludge-Derived Nitrogen and Oxygen Co-Doped Carbon Material with Hierarchical Porous Structure for High-Performance All-Solid-State Supercapacitors. Li X, Zhang M, Tan Z, Gong Z, Liu P, Wang Z. Materials (Basel); 2021 May 11; 14(10):. PubMed ID: 34064734 [Abstract] [Full Text] [Related]
37. All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials. Chen T, Tang Y, Qiao Y, Liu Z, Guo W, Song J, Mu S, Yu S, Zhao Y, Gao F. Sci Rep; 2016 Mar 29; 6():23289. PubMed ID: 27021241 [Abstract] [Full Text] [Related]
38. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids. Guo N, Li M, Wang Y, Sun X, Wang F, Yang R. ACS Appl Mater Interfaces; 2016 Dec 14; 8(49):33626-33634. PubMed ID: 27960404 [Abstract] [Full Text] [Related]
39. Hierarchical porous "skin/skeleton"-like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Sun L, Fu Q, Pan C. J Hazard Mater; 2021 May 15; 410():124565. PubMed ID: 33229257 [Abstract] [Full Text] [Related]