These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 2645283

  • 41. Nonequivalence of the nucleotide-binding subunits of an ABC transporter, the histidine permease, and conformational changes in the membrane complex.
    Kreimer DI, Chai KP, Ferro-Luzzi Ames G.
    Biochemistry; 2000 Nov 21; 39(46):14183-95. PubMed ID: 11087367
    [Abstract] [Full Text] [Related]

  • 42. Energy coupling in periplasmic permeases: the histidine permease as a model system.
    Ames GF.
    Res Microbiol; 1990 Nov 21; 141(3):341-8. PubMed ID: 2177913
    [No Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli.
    Gilson E, Higgins CF, Hofnung M, Ferro-Luzzi Ames G, Nikaido H.
    J Biol Chem; 1982 Sep 10; 257(17):9915-8. PubMed ID: 7050111
    [Abstract] [Full Text] [Related]

  • 48. Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ.
    Chu BC, DeWolf T, Vogel HJ.
    J Biol Chem; 2013 Nov 01; 288(44):31409-22. PubMed ID: 24036119
    [Abstract] [Full Text] [Related]

  • 49. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles.
    Misko TP, Mitchell WJ, Meadow ND, Roseman S.
    J Biol Chem; 1987 Nov 25; 262(33):16261-6. PubMed ID: 3316216
    [Abstract] [Full Text] [Related]

  • 50. Components of histidine transport: histidine-binding proteins and hisP protein.
    Ames GF, Lever J.
    Proc Natl Acad Sci U S A; 1970 Aug 25; 66(4):1096-103. PubMed ID: 4920090
    [Abstract] [Full Text] [Related]

  • 51. Ligand binding specificity of the Escherichia coli periplasmic histidine binding protein, HisJ.
    Paul S, Banerjee S, Vogel HJ.
    Protein Sci; 2017 Feb 25; 26(2):268-279. PubMed ID: 27865021
    [Abstract] [Full Text] [Related]

  • 52. Adenosine triphosphate-dependent transport of leukotriene C4 by membrane vesicles prepared from cisplatin-resistant human epidermoid carcinoma tumor cells.
    Fujii R, Mutoh M, Sumizawa T, Chen ZS, Yoshimura A, Akiyama S.
    J Natl Cancer Inst; 1994 Dec 07; 86(23):1781-4. PubMed ID: 7966417
    [Abstract] [Full Text] [Related]

  • 53. ATP-dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping.
    Mademidis A, Killmann H, Kraas W, Flechsler I, Jung G, Braun V.
    Mol Microbiol; 1997 Dec 07; 26(5):1109-23. PubMed ID: 9426146
    [Abstract] [Full Text] [Related]

  • 54. [Reconstitution of high-affinity galactose transport of Salmonella typhimurium in proteoliposomes: energization by lipoamide and NAD or by the membrane potential; inhibition by ATP].
    Richarme G.
    C R Acad Sci III; 1987 Dec 07; 305(3):55-8. PubMed ID: 3113676
    [Abstract] [Full Text] [Related]

  • 55. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.
    Davidson AL, Shuman HA, Nikaido H.
    Proc Natl Acad Sci U S A; 1992 Mar 15; 89(6):2360-4. PubMed ID: 1549599
    [Abstract] [Full Text] [Related]

  • 56. A proton nuclear magnetic resonance investigation of histidine-binding protein J of Salmonella typhimurium: a model for transport of L-histidine across cytoplasmic membrane.
    Ho C, Giza Y, Takahashi S, Ugen KE, Cottam PF, Dowd SR.
    J Supramol Struct; 1980 Mar 15; 13(2):131-45. PubMed ID: 7017276
    [Abstract] [Full Text] [Related]

  • 57. A mutational hot-spot in the hisM gene of the histidine transport operon in Salmonella typhimurium is due to deletion of repeated sequences and results in an altered specificity of transport.
    Payne GM, Spudich EN, Ames GF.
    Mol Gen Genet; 1985 Mar 15; 200(3):493-6. PubMed ID: 3900641
    [Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis.
    Davidson AL, Laghaeian SS, Mannering DE.
    J Biol Chem; 1996 Mar 01; 271(9):4858-63. PubMed ID: 8617756
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.