These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
504 related items for PubMed ID: 26453964
21. The orphan G protein-coupled receptor GPR149 is a negative regulator of myelination and remyelination. Suo N, He B, Cui S, Yang Y, Wang M, Yuan Q, Xie X. Glia; 2022 Oct; 70(10):1992-2008. PubMed ID: 35758525 [Abstract] [Full Text] [Related]
22. The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Fang M, Chen L, Tang T, Qiu M, Xu X. Glia; 2023 Nov; 71(11):2499-2510. PubMed ID: 37278537 [Abstract] [Full Text] [Related]
23. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Gorter RP, Baron W. Neurosci Lett; 2020 Jun 11; 729():134980. PubMed ID: 32315713 [Abstract] [Full Text] [Related]
24. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules. Simon K, Hennen S, Merten N, Blättermann S, Gillard M, Kostenis E, Gomeza J. J Biol Chem; 2016 Jan 08; 291(2):705-18. PubMed ID: 26620557 [Abstract] [Full Text] [Related]
26. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. Int J Mol Sci; 2020 Mar 08; 21(5):. PubMed ID: 32182666 [Abstract] [Full Text] [Related]
27. Identification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination. Mei F, Mayoral SR, Nobuta H, Wang F, Desponts C, Lorrain DS, Xiao L, Green AJ, Rowitch D, Whistler J, Chan JR. J Neurosci; 2016 Jul 27; 36(30):7925-35. PubMed ID: 27466337 [Abstract] [Full Text] [Related]
28. Expression of A1 adenosine receptors in the developing avian retina: in vivo modulation by A(2A) receptors and endogenous adenosine. Brito R, Pereira MR, Paes-de-Carvalho R, Calaza Kda C. J Neurochem; 2012 Oct 27; 123(2):239-49. PubMed ID: 22862679 [Abstract] [Full Text] [Related]
29. Purinergic neurone-glia signalling in cognitive-related pathologies. Illes P, Verkhratsky A. Neuropharmacology; 2016 May 27; 104():62-75. PubMed ID: 26256423 [Abstract] [Full Text] [Related]
30. The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Crang AJ, Gilson JM, Li WW, Blakemore WF. Eur J Neurosci; 2004 Sep 27; 20(6):1445-60. PubMed ID: 15355312 [Abstract] [Full Text] [Related]
31. Purinergic mechanisms in neuroinflammation: An update from molecules to behavior. Beamer E, Gölöncsér F, Horváth G, Bekő K, Otrokocsi L, Koványi B, Sperlágh B. Neuropharmacology; 2016 May 27; 104():94-104. PubMed ID: 26384652 [Abstract] [Full Text] [Related]
32. Purinergic receptors in embryonic and adult neurogenesis. Oliveira Á, Illes P, Ulrich H. Neuropharmacology; 2016 May 27; 104():272-81. PubMed ID: 26456352 [Abstract] [Full Text] [Related]
33. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. McCaughey-Chapman A, Connor B. J Neurosci Res; 2023 Jun 27; 101(6):1000-1028. PubMed ID: 36749877 [Abstract] [Full Text] [Related]
34. [Oligodendrocytes have a key role in the development of CNS function and in myelin related diseases]. Anderson ES, Bjartmar C. Lakartidningen; 2000 Jul 12; 97(28-29):3265-8. PubMed ID: 10997013 [Abstract] [Full Text] [Related]
35. Decoding signaling and function of the orphan G protein-coupled receptor GPR17 with a small-molecule agonist. Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E. Sci Signal; 2013 Oct 22; 6(298):ra93. PubMed ID: 24150254 [Abstract] [Full Text] [Related]
36. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS, Kantor C, Sargent A, Quick KL, Schlatzer DM, Tang H, Papoian R, Brimacombe KR, Shen M, Boxer MB, Jadhav A, Robinson AP, Podojil JR, Miller SD, Miller RH, Tesar PJ. Nature; 2015 Jun 11; 522(7555):216-20. PubMed ID: 25896324 [Abstract] [Full Text] [Related]
37. MicroRNAs in oligodendrocyte development and remyelination. Ngo C, Kothary R. J Neurochem; 2022 Aug 11; 162(4):310-321. PubMed ID: 35536759 [Abstract] [Full Text] [Related]
38. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. J Steroid Biochem Mol Biol; 2016 Jun 11; 160():43-52. PubMed ID: 26776441 [Abstract] [Full Text] [Related]
39. Remyelinating strategies in multiple sclerosis. Luessi F, Kuhlmann T, Zipp F. Expert Rev Neurother; 2014 Nov 11; 14(11):1315-34. PubMed ID: 25331418 [Abstract] [Full Text] [Related]
40. The complex world of oligodendroglial differentiation inhibitors. Kremer D, Aktas O, Hartung HP, Küry P. Ann Neurol; 2011 Apr 11; 69(4):602-18. PubMed ID: 21520230 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]