These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model. Orth P, Cucchiarini M, Kaul G, Ong MF, Gräber S, Kohn DM, Madry H. Osteoarthritis Cartilage; 2012 Oct; 20(10):1161-9. PubMed ID: 22771776 [Abstract] [Full Text] [Related]
4. Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle. Qiu YS, Shahgaldi BF, Revell WJ, Heatley FW. Osteoarthritis Cartilage; 2003 Nov; 11(11):810-20. PubMed ID: 14609534 [Abstract] [Full Text] [Related]
5. [Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells]. Liu M, Xiang Z, Pei F, Huang F, Cen S, Zhong G, Fan H, Xiao Y, Sun J, Gao Y. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jan; 24(1):87-93. PubMed ID: 20135980 [Abstract] [Full Text] [Related]
8. Age-Dependent Subchondral Bone Remodeling and Cartilage Repair in a Minipig Defect Model. Pfeifer CG, Fisher MB, Saxena V, Kim M, Henning EA, Steinberg DA, Dodge GR, Mauck RL. Tissue Eng Part C Methods; 2017 Nov; 23(11):745-753. PubMed ID: 28747146 [Abstract] [Full Text] [Related]
9. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Shen K, Liu X, Qin H, Chai Y, Wang L, Yu B. Int J Med Sci; 2021 Nov; 18(16):3808-3820. PubMed ID: 34790057 [Abstract] [Full Text] [Related]
10. Therapeutic Effects of the Addition of Platelet-Rich Plasma to Bioimplants and Early Rehabilitation Exercise on Articular Cartilage Repair. Chang NJ, Erdenekhuyag Y, Chou PH, Chu CJ, Lin CC, Shie MY. Am J Sports Med; 2018 Jul; 46(9):2232-2241. PubMed ID: 29927631 [Abstract] [Full Text] [Related]
11. [Demineralized cancellous bone seeded with allogeneic chondrocytes for repairing articular osteochondral defects in rabbits]. Yang B, Chang Y, Ling M, Li S, Cao J. Nan Fang Yi Ke Da Xue Xue Bao; 2018 Aug 30; 38(9):1039-1044. PubMed ID: 30377114 [Abstract] [Full Text] [Related]
12. [Domestic porous tantalum loaded with bone morphogenetic 7 in repairing osteochondral defect in rabbits]. Zhang H, Wang Q, Gan H, Shi W, Liu Y, Zhang D, Li Q, Wang Z. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Jul 08; 30(7):836-842. PubMed ID: 29786319 [Abstract] [Full Text] [Related]
13. Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Lee JC, Min HJ, Park HJ, Lee S, Seong SC, Lee MC. Arthroscopy; 2013 Jun 08; 29(6):1034-46. PubMed ID: 23726109 [Abstract] [Full Text] [Related]
19. Effect of Bone Morphogenetic Protein-2 Combined With Microfracture for Osteochondral Defect of the Talus in a Rabbit Model. Dang LHN, Tran NT, Oh JS, Kwon TY, Lee KB. Am J Sports Med; 2023 May 08; 51(6):1560-1570. PubMed ID: 37014305 [Abstract] [Full Text] [Related]
20. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Am J Sports Med; 2011 Aug 08; 39(8):1731-40. PubMed ID: 21628638 [Abstract] [Full Text] [Related] Page: [Next] [New Search]