These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


491 related items for PubMed ID: 26455260

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Pt-Embedded CuO x-CeO2 Multicore-Shell Composites: Interfacial Redox Reaction-Directed Synthesis and Composition-Dependent Performance for CO Oxidation.
    Wu K, Fu XP, Yu WZ, Wang WW, Jia CJ, Du PP, Si R, Wang YH, Li LD, Zhou L, Sun LD, Yan CH.
    ACS Appl Mater Interfaces; 2018 Oct 10; 10(40):34172-34183. PubMed ID: 30205674
    [Abstract] [Full Text] [Related]

  • 3. CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature.
    Wang F, Yu Z, Zhai S, Li Y, Xu Y, Ye Y, Wei X, Xu J, Xue B.
    Environ Sci Pollut Res Int; 2023 Mar 10; 30(11):31895-31904. PubMed ID: 36459322
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Heterostructured Copper-Ceria and Iron-Ceria Nanorods: Role of Morphology, Redox, and Acid Properties in Catalytic Diesel Soot Combustion.
    Sudarsanam P, Hillary B, Amin MH, Rockstroh N, Bentrup U, Brückner A, Bhargava SK.
    Langmuir; 2018 Feb 27; 34(8):2663-2673. PubMed ID: 29397744
    [Abstract] [Full Text] [Related]

  • 6. Baize-like CeO2 and NiO/CeO2 nanorod catalysts prepared by dealloying for CO oxidation.
    Zhang X, Li K, Shi W, Wei C, Song X, Yang S, Sun Z.
    Nanotechnology; 2017 Jan 27; 28(4):045602. PubMed ID: 27981941
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Enhanced Catalytic Performance of (CuO)x /Ce0.9 Cu0.1 O2 Nanospheres: Combined Contribution of the Synergistic Effect and Surface Defects.
    Yang H, Pan Y, Xu Y, Yang Y, Sun G.
    Chempluschem; 2015 May 27; 80(5):886-894. PubMed ID: 31973336
    [Abstract] [Full Text] [Related]

  • 9. Cu/CeO2 Catalyst for Water-Gas Shift Reaction: Effect of CeO2 Pretreatment.
    Chen C, Zhan Y, Zhou J, Li D, Zhang Y, Lin X, Jiang L, Zheng Q.
    Chemphyschem; 2018 Jun 19; 19(12):1448-1455. PubMed ID: 29539184
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The Preparation and Catalytic Properties of Nanoporous Pt/CeO2 Composites with Nanorod Framework Structures.
    Wang H, Duan D, Ma C, Shi W, Liang M, Wang L, Song X, Gao L, Sun Z.
    Nanomaterials (Basel); 2019 May 02; 9(5):. PubMed ID: 31052543
    [Abstract] [Full Text] [Related]

  • 12. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity.
    Qin J, Lu J, Cao M, Hu C.
    Nanoscale; 2010 Dec 02; 2(12):2739-43. PubMed ID: 20941437
    [Abstract] [Full Text] [Related]

  • 13. Support structure and reduction treatment effects on CO oxidation of SiO2 nanospheres and CeO2 nanorods supported ruthenium catalysts.
    Li J, Liu Z, Wang R.
    J Colloid Interface Sci; 2018 Dec 01; 531():204-215. PubMed ID: 30032007
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Facile preparation of well-dispersed CeO2-ZnO composite hollow microspheres with enhanced catalytic activity for CO oxidation.
    Xie Q, Zhao Y, Guo H, Lu A, Zhang X, Wang L, Chen MS, Peng DL.
    ACS Appl Mater Interfaces; 2014 Jan 08; 6(1):421-8. PubMed ID: 24303982
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.