These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ. J Biol Chem; 1990 Sep 25; 265(27):16330-6. PubMed ID: 2168888 [Abstract] [Full Text] [Related]
23. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. Ksenzenko M, Konstantinov AA, Khomutov GB, Tikhonov AN, Ruuge EK. FEBS Lett; 1984 Sep 17; 175(1):105-8. PubMed ID: 6090204 [Abstract] [Full Text] [Related]
26. Redox-interaction of alpha-tocopheryl quinone with isolated mitochondrial cytochrome bc1 complex. Gille L, Gregor W, Staniek K, Nohl H. Biochem Pharmacol; 2004 Jul 15; 68(2):373-81. PubMed ID: 15194009 [Abstract] [Full Text] [Related]
27. [Tiron as a spin-trap for superoxide radicals produced by the respiratory chain of submitochondrial particles]. Grigolava IV, Ksenzenko MIu, Konstantinob AA, Tikhonov AN, Kerimov TM. Biokhimiia; 1980 Jan 15; 45(1):75-82. PubMed ID: 6260236 [Abstract] [Full Text] [Related]
28. EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides. McCurley JP, Miki T, Yu L, Yu CA. Biochim Biophys Acta; 1990 Nov 05; 1020(2):176-86. PubMed ID: 2173951 [Abstract] [Full Text] [Related]
29. Mitochondrial nitric oxide production supported by reverse electron transfer. Bombicino SS, Iglesias DE, Zaobornyj T, Boveris A, Valdez LB. Arch Biochem Biophys; 2016 Oct 01; 607():8-19. PubMed ID: 27523732 [Abstract] [Full Text] [Related]
30. Tocopheramine succinate and tocopheryl succinate: mechanism of mitochondrial inhibition and superoxide radical production. Gruber J, Staniek K, Krewenka C, Moldzio R, Patel A, Böhmdorfer S, Rosenau T, Gille L. Bioorg Med Chem; 2014 Jan 15; 22(2):684-91. PubMed ID: 24393721 [Abstract] [Full Text] [Related]
33. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment. Papa S, Lorusso M, Izzo G, Capuano F. Biochem J; 1981 Feb 15; 194(2):395-406. PubMed ID: 7305997 [Abstract] [Full Text] [Related]
34. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Turrens JF, Boveris A. Biochem J; 1980 Nov 01; 191(2):421-7. PubMed ID: 6263247 [Abstract] [Full Text] [Related]
35. The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles. van Belzen R, Kotlyar AB, Moon N, Dunham WR, Albracht SP. Biochemistry; 1997 Jan 28; 36(4):886-93. PubMed ID: 9020788 [Abstract] [Full Text] [Related]
37. Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes I and III without modification of cofactors. Pearce LL, Kanai AJ, Epperly MW, Peterson J. Nitric Oxide; 2005 Dec 28; 13(4):254-63. PubMed ID: 16185902 [Abstract] [Full Text] [Related]
38. On the role of ubiquinone in the respiratory chain. Zhu QS, Berden JA, De Vries S, Slater EC. Biochim Biophys Acta; 1982 Apr 19; 680(1):69-79. PubMed ID: 7074101 [Abstract] [Full Text] [Related]
39. Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Han D, Canali R, Rettori D, Kaplowitz N. Mol Pharmacol; 2003 Nov 19; 64(5):1136-44. PubMed ID: 14573763 [Abstract] [Full Text] [Related]