These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
563 related items for PubMed ID: 26457826
1. New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Ma MN, Zhuo Y, Yuan R, Chai YQ. Anal Chem; 2015 Nov 17; 87(22):11389-97. PubMed ID: 26457826 [Abstract] [Full Text] [Related]
3. Electrochemiluminescence biosensor for microRNA determination based on AgNCs@MoS2 composite with (AuNPs-Semicarbazide)@Cu-MOF as coreaction accelerator. Li F, Wang M, Zhou Y, Yin H, Ai S. Mikrochim Acta; 2021 Feb 05; 188(3):68. PubMed ID: 33547602 [Abstract] [Full Text] [Related]
4. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods. Wang J, Jiang X, Han H. Biosens Bioelectron; 2016 Aug 15; 82():26-31. PubMed ID: 27031188 [Abstract] [Full Text] [Related]
5. Hemin as electrochemically regenerable co-reaction accelerator for construction of an ultrasensitive PTCA-based electrochemiluminescent aptasensor. Zeng WJ, Liao N, Lei YM, Zhao J, Chai YQ, Yuan R, Zhuo Y. Biosens Bioelectron; 2018 Feb 15; 100():490-496. PubMed ID: 28965054 [Abstract] [Full Text] [Related]
6. Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy. Jie G, Yuan J. Anal Chem; 2012 Mar 20; 84(6):2811-7. PubMed ID: 22320223 [Abstract] [Full Text] [Related]
7. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles. Xie L, You L, Cao X. Spectrochim Acta A Mol Biomol Spectrosc; 2013 May 15; 109():110-5. PubMed ID: 23501724 [Abstract] [Full Text] [Related]
8. Aptamer-based highly sensitive electrochemiluminescent detection of thrombin via nanoparticle layer-by-layer assembled amplification labels. Chen Y, Jiang B, Xiang Y, Chai Y, Yuan R. Chem Commun (Camb); 2011 Jul 21; 47(27):7758-60. PubMed ID: 21625697 [Abstract] [Full Text] [Related]
9. An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10-perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag. Ma MN, Zhang X, Zhuo Y, Chai YQ, Yuan R. Nanoscale; 2015 Feb 07; 7(5):2085-92. PubMed ID: 25559492 [Abstract] [Full Text] [Related]
10. Versatile electrochemiluminescent biosensor for protein-nucleic acid interaction based on the unique quenching effect of deoxyguanosine-5'-phosphate on electrochemiluminescence of CdTe/ZnS quantum dots. Zhao P, Zhou L, Nie Z, Xu X, Li W, Huang Y, He K, Yao S. Anal Chem; 2013 Jul 02; 85(13):6279-86. PubMed ID: 23742234 [Abstract] [Full Text] [Related]
11. The Ru complex and hollow gold nanoparticles branched-hydrogel as signal probe for construction of electrochemiluminescent aptasensor. Gui GF, Zhuo Y, Chai YQ, Xiang Y, Yuan R. Biosens Bioelectron; 2016 Mar 15; 77():7-12. PubMed ID: 26385731 [Abstract] [Full Text] [Related]
12. In situ generation of self-enhanced luminophore by β-lactamase catalysis for highly sensitive electrochemiluminescent aptasensor. Gui GF, Zhuo Y, Chai YQ, Xiang Y, Yuan R. Anal Chem; 2014 Jun 17; 86(12):5873-80. PubMed ID: 24857788 [Abstract] [Full Text] [Related]
13. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Shan Y, Xu JJ, Chen HY. Nanoscale; 2011 Jul 17; 3(7):2916-23. PubMed ID: 21633752 [Abstract] [Full Text] [Related]
14. Electrochemiluminescent aptasensor based on resonance energy transfer system between CdTe quantum dots and cyanine dyes for the sensitive detection of Ochratoxin A. Gao J, Chen Z, Mao L, Zhang W, Wen W, Zhang X, Wang S. Talanta; 2019 Jul 01; 199():178-183. PubMed ID: 30952243 [Abstract] [Full Text] [Related]
15. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Zhu HY, Ding SN. Biosens Bioelectron; 2019 Jun 01; 134():109-116. PubMed ID: 30965162 [Abstract] [Full Text] [Related]
16. Highly enhanced electrochemiluminescence based on pseudo triple-enzyme cascade catalysis and in situ generation of co-reactant for thrombin detection. Xiao L, Chai Y, Yuan R, Wang H, Bai L. Analyst; 2014 Mar 07; 139(5):1030-6. PubMed ID: 24443720 [Abstract] [Full Text] [Related]
17. Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by electrochemiluminescence. Xia H, Li L, Yin Z, Hou X, Zhu JJ. ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):696-703. PubMed ID: 25475153 [Abstract] [Full Text] [Related]
19. Switchable electrochemiluminescence aptasensor coupled with resonance energy transfer for selective attomolar detection of Hg2+ via CdTe@CdS/dendrimer probe and Au nanoparticle quencher. Babamiri B, Salimi A, Hallaj R. Biosens Bioelectron; 2018 Apr 15; 102():328-335. PubMed ID: 29161665 [Abstract] [Full Text] [Related]
20. Ultrasensitive aptasensing of insulin based on hollow porous C3N4/S2O82-/AuPtAg ECL ternary system and DNA walker amplification. Zhou X, Zhang W, Wang Z, Han J, Xie G, Chen S. Biosens Bioelectron; 2020 Jan 15; 148():111795. PubMed ID: 31665673 [Abstract] [Full Text] [Related] Page: [Next] [New Search]