These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 26459338

  • 1. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration.
    Lorenzini M, Zapparoli G.
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1171-80. PubMed ID: 26459338
    [Abstract] [Full Text] [Related]

  • 2. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma.
    Lorenzini M, Cappello MS, Zapparoli G.
    J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Filamentous fungi associated with natural infection of noble rot on withered grapes.
    Lorenzini M, Simonato B, Favati F, Bernardi P, Sbarbati A, Zapparoli G.
    Int J Food Microbiol; 2018 May 02; 272():83-86. PubMed ID: 29550687
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Description of a taxonomically undefined Sclerotiniaceae strain from withered rotten-grapes.
    Lorenzini M, Zapparoli G.
    Antonie Van Leeuwenhoek; 2016 Feb 02; 109(2):197-205. PubMed ID: 26581438
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
    Lorenzini M, Zapparoli G.
    Int J Food Microbiol; 2020 Apr 16; 319():108505. PubMed ID: 31911210
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Molecular detection of Fusarium oxysporum f. sp. niveum and Mycosphaerella melonis in infected plant tissues and soil.
    Zhang Z, Zhang J, Wang Y, Zheng X.
    FEMS Microbiol Lett; 2005 Aug 01; 249(1):39-47. PubMed ID: 16019161
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Cladosporium Species Recovered from Clinical Samples in the United States.
    Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N, Guarro J, Gené J.
    J Clin Microbiol; 2015 Sep 01; 53(9):2990-3000. PubMed ID: 26179305
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Contamination by moulds of grape berries in Slovakia.
    Mikusová P, Ritieni A, Santini A, Juhasová G, Srobárová A.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May 01; 27(5):738-47. PubMed ID: 20349371
    [Abstract] [Full Text] [Related]

  • 20. DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen.
    Stokholm MS, Wulff EG, Zida EP, Thio IG, Néya JB, Soalla RW, Głazowska SE, Andresen M, Topbjerg HB, Boelt B, Lund OS.
    Microbiol Res; 2016 Oct 01; 191():38-50. PubMed ID: 27524652
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.