These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 26463421

  • 1. Controllable degradation kinetics of POSS nanoparticle-integrated poly(ε-caprolactone urea)urethane elastomers for tissue engineering applications.
    Yildirimer L, Buanz A, Gaisford S, Malins EL, Remzi Becer C, Moiemen N, Reynolds GM, Seifalian AM.
    Sci Rep; 2015 Oct 14; 5():15040. PubMed ID: 26463421
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.
    Raghunath J, Georgiou G, Armitage D, Nazhat SN, Sales KM, Butler PE, Seifalian AM.
    J Biomed Mater Res A; 2009 Dec 14; 91(3):834-44. PubMed ID: 19051308
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K.
    Biomed Mater; 2016 Feb 02; 11(1):015011. PubMed ID: 26836023
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S, Davenport Huyer L, Estili M, Yee B, Smith N, Xu Z, Sun Y, Radisic M.
    Acta Biomater; 2017 Apr 01; 52():81-91. PubMed ID: 27940161
    [Abstract] [Full Text] [Related]

  • 8. Functional polyhedral oligomeric silsesquioxane reinforced poly(lactic acid) nanocomposites for biomedical applications.
    Huang L, Tan J, Li W, Zhou L, Liu Z, Luo B, Lu L, Zhou C.
    J Mech Behav Biomed Mater; 2019 Feb 01; 90():604-614. PubMed ID: 30500698
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Development of biodegradable crosslinked urethane-doped polyester elastomers.
    Dey J, Xu H, Shen J, Thevenot P, Gondi SR, Nguyen KT, Sumerlin BS, Tang L, Yang J.
    Biomaterials; 2008 Dec 01; 29(35):4637-49. PubMed ID: 18801566
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Slow chlorine releasing compounds: A viable sterilisation method for bioabsorbable nanocomposite biomaterials.
    Naderi N, Griffin M, Malins E, Becer R, Mosahebi A, Whitaker IS, Seifalian AM.
    J Biomater Appl; 2016 Feb 01; 30(7):1114-24. PubMed ID: 26538358
    [Abstract] [Full Text] [Related]

  • 15. Development of resorbable nanocomposite tracheal and bronchial scaffolds for paediatric applications.
    Teoh GZ, Crowley C, Birchall MA, Seifalian AM.
    Br J Surg; 2015 Jan 01; 102(2):e140-50. PubMed ID: 25627127
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration.
    Xu C, Huang Y, Tang L, Hong Y.
    ACS Appl Mater Interfaces; 2017 Jan 25; 9(3):2169-2180. PubMed ID: 28036169
    [Abstract] [Full Text] [Related]

  • 18. Electrospun biodegradable calcium containing poly(ester-urethane)urea: synthesis, fabrication, in vitro degradation, and biocompatibility evaluation.
    Nair PA, Ramesh P.
    J Biomed Mater Res A; 2013 Jul 25; 101(7):1876-87. PubMed ID: 23712992
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.