These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 26467565

  • 1. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells.
    Yan F, Zhang J, Zhang L, Zheng X.
    Food Funct; 2016 Jan; 7(1):425-33. PubMed ID: 26467565
    [Abstract] [Full Text] [Related]

  • 2. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice.
    Yan F, Dai G, Zheng X.
    J Nutr Biochem; 2016 Oct; 36():68-80. PubMed ID: 27580020
    [Abstract] [Full Text] [Related]

  • 3. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes.
    Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, Chen Q, Li YH, Wang JJ, Kang YM, Zhu GQ.
    Clin Sci (Lond); 2015 Nov; 129(10):839-50. PubMed ID: 26201094
    [Abstract] [Full Text] [Related]

  • 4. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance.
    Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ.
    J Agric Food Chem; 2013 Jun 26; 61(25):6069-76. PubMed ID: 23731091
    [Abstract] [Full Text] [Related]

  • 5. An active part of Artemisia sacrorum Ledeb. suppresses gluconeogenesis through AMPK mediated GSK3β and CREB phosphorylation in human HepG2 cells.
    Yuan HD, Piao GC.
    Biosci Biotechnol Biochem; 2011 Jun 26; 75(6):1079-84. PubMed ID: 21670525
    [Abstract] [Full Text] [Related]

  • 6. Involvement of AMPK activation in the inhibition of hepatic gluconeogenesis by Ficus carica leaf extract in diabetic mice and HepG2 cells.
    Zhang Y, Chen J, Zeng Y, Huang D, Xu Q.
    Biomed Pharmacother; 2019 Jan 26; 109():188-194. PubMed ID: 30396076
    [Abstract] [Full Text] [Related]

  • 7. Mibefradil reduces hepatic glucose output in HepG2 cells via Ca2+/calmodulin-dependent protein kinase II-dependent Akt/forkhead box O1signaling.
    Ying D, Mengya S, Peilin L, Lingong Z, Huan M, Jing X, Le Z, Kebin Z, Bin C, Jun Y, Shaodong G, Zihui X.
    Eur J Pharmacol; 2021 Sep 15; 907():174296. PubMed ID: 34224697
    [Abstract] [Full Text] [Related]

  • 8. Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells.
    Jiang B, Le L, Zhai W, Wan W, Hu K, Yong P, He C, Xu L, Xiao P.
    Phytomedicine; 2016 Aug 15; 23(9):891-900. PubMed ID: 27387397
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. PCBP2 regulates hepatic insulin sensitivity via HIF-1α and STAT3 pathway in HepG2 cells.
    Xia N, Tang Z, Wang C, Xu G, Nie X, Zhang W, Zhao Y, Wang S, Zhu X, Cui S.
    Biochem Biophys Res Commun; 2016 Aug 15; 463(1-2):116-22. PubMed ID: 26002461
    [Abstract] [Full Text] [Related]

  • 16. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions.
    Yan F, Chen X, Zheng X.
    Food Res Int; 2017 Dec 15; 102():213-224. PubMed ID: 29195942
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Phenolic-containing organic extracts of mulberry (Morus alba L.) leaves inhibit HepG2 hepatoma cells through G2/M phase arrest, induction of apoptosis, and inhibition of topoisomerase IIα activity.
    Naowaratwattana W, De-Eknamkul W, De Mejia EG.
    J Med Food; 2010 Oct 15; 13(5):1045-56. PubMed ID: 20828312
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. GSK3β regulates gluconeogenic gene expression through HNF4α and FOXO1.
    Sakamaki J, Daitoku H, Kaneko Y, Hagiwara A, Ueno K, Fukamizu A.
    J Recept Signal Transduct Res; 2012 Apr 15; 32(2):96-101. PubMed ID: 22384829
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.