These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


313 related items for PubMed ID: 26476869

  • 1. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions.
    Hortal E, Planelles D, Resquin F, Climent JM, Azorín JM, Pons JL.
    J Neuroeng Rehabil; 2015 Oct 17; 12():92. PubMed ID: 26476869
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F, Gonzalez-Vargas J, Ibáñez J, Brunetti F, Dimbwadyo I, Carrasco L, Alves S, Gonzalez-Alted C, Gomez-Blanco A, Pons JL.
    J Neuroeng Rehabil; 2017 Oct 12; 14(1):104. PubMed ID: 29025427
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar SR.
    J Neuroeng Rehabil; 2014 Dec 16; 11():165. PubMed ID: 25510922
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient.
    Resquin F, Ibañez J, Gonzalez-Vargas J, Brunetti F, Dimbwadyo I, Alves S, Carrasco L, Torres L, Pons JL.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug 16; 2016():6381-6384. PubMed ID: 28269708
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential.
    Soriano-Segura P, Ortiz M, Iáñez E, Azorín JM.
    Comput Methods Programs Biomed; 2024 Oct 16; 255():108332. PubMed ID: 39053352
    [Abstract] [Full Text] [Related]

  • 10. Classification of different reaching movements from the same limb using EEG.
    Shiman F, López-Larraz E, Sarasola-Sanz A, Irastorza-Landa N, Spüler M, Birbaumer N, Ramos-Murguialday A.
    J Neural Eng; 2017 Aug 16; 14(4):046018. PubMed ID: 28467325
    [Abstract] [Full Text] [Related]

  • 11. Neural activity modulations and motor recovery following brain-exoskeleton interface mediated stroke rehabilitation.
    Bhagat NA, Yozbatiran N, Sullivan JL, Paranjape R, Losey C, Hernandez Z, Keser Z, Grossman R, Francisco GE, O'Malley MK, Contreras-Vidal JL.
    Neuroimage Clin; 2020 Aug 16; 28():102502. PubMed ID: 33395991
    [Abstract] [Full Text] [Related]

  • 12. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene.
    Tang Z, Wang H, Cui Z, Jin X, Zhang L, Peng Y, Xing B.
    IEEE Trans Neural Syst Rehabil Eng; 2023 Aug 16; 31():4390-4401. PubMed ID: 37910412
    [Abstract] [Full Text] [Related]

  • 13. Usability and acceptance of using a lower-limb exoskeleton controlled by a BMI in incomplete spinal cord injury patients: a case study.
    Quiles V, Ferrero L, Ianez E, Ortiz M, Megia A, Comino N, Gil-Agudo AM, Azorin JM.
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 16; 2020():4737-4740. PubMed ID: 33019049
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Validation of a Hybrid Exoskeleton for Upper Limb Rehabilitation. A Preliminary Study.
    Alguacil-Diego IM, Cuesta-Gómez A, Contreras-González AF, Pont-Esteban D, Cantalejo-Escobar D, Sánchez-Urán MÁ, Ferre M.
    Sensors (Basel); 2021 Nov 04; 21(21):. PubMed ID: 34770647
    [Abstract] [Full Text] [Related]

  • 18. A force-based human machine interface to drive a motorized upper limb exoskeleton. a pilot study.
    Gandolla M, Luciani B, Pirovano DE, Pedrocchi A, Braghin F.
    IEEE Int Conf Rehabil Robot; 2022 Jul 04; 2022():1-6. PubMed ID: 36176155
    [Abstract] [Full Text] [Related]

  • 19. Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements.
    Irastorza-Landa N, Sarasola-Sanz A, Lopez-Larraz E, Bibian C, Shiman P, Birbaumer N, Ramos-Murguialday A.
    IEEE Int Conf Rehabil Robot; 2017 Jul 04; 2017():128-133. PubMed ID: 28813806
    [Abstract] [Full Text] [Related]

  • 20. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E, Coscia M, Marcheschi S, Roas G, Salsedo F, Frisoli A, Bergamasco M, Micera S.
    J Neuroeng Rehabil; 2016 Jan 23; 13():9. PubMed ID: 26801620
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.