These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


428 related items for PubMed ID: 26477312

  • 1. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence.
    Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, Bailey M, Zhang H, Maher CA, Humphrey PA, Andriole GL, Ding L, You Z, Chen F.
    Oncogene; 2016 Jun 23; 35(25):3282-92. PubMed ID: 26477312
    [Abstract] [Full Text] [Related]

  • 2. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms.
    Tripathi P, Wang Y, Coussens M, Manda KR, Casey AM, Lin C, Poyo E, Pfeifer JD, Basappa N, Bates CM, Ma L, Zhang H, Pan M, Ding L, Chen F.
    Oncogene; 2014 Apr 03; 33(14):1840-9. PubMed ID: 23624921
    [Abstract] [Full Text] [Related]

  • 3. Down-Regulation of Nfatc1 Suppresses Proliferation, Migration, Invasion, and Warburg Effect in Prostate Cancer Cells.
    Liu Y, Liang T, Qiu X, Ye X, Li Z, Tian B, Yan D.
    Med Sci Monit; 2019 Feb 28; 25():1572-1581. PubMed ID: 30817743
    [Abstract] [Full Text] [Related]

  • 4. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways.
    Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT.
    Neoplasia; 2014 Nov 28; 16(11):883-99. PubMed ID: 25425963
    [Abstract] [Full Text] [Related]

  • 5. Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate.
    Mi J, Hooker E, Balog S, Zeng H, Johnson DT, He Y, Yu EJ, Wu H, Le V, Lee DH, Aldahl J, Gonzalgo ML, Sun Z.
    J Biol Chem; 2018 Dec 28; 293(52):20123-20136. PubMed ID: 30401749
    [Abstract] [Full Text] [Related]

  • 6. Interactions between cells with distinct mutations in c-MYC and Pten in prostate cancer.
    Kim J, Eltoum IE, Roh M, Wang J, Abdulkadir SA.
    PLoS Genet; 2009 Jul 28; 5(7):e1000542. PubMed ID: 19578399
    [Abstract] [Full Text] [Related]

  • 7. A basal-enriched microRNA is required for prostate tumorigenesis in a Pten knockout mouse model.
    Fan X, Bjerke GA, Riemondy K, Wang L, Yi R.
    Mol Carcinog; 2019 Dec 28; 58(12):2241-2253. PubMed ID: 31512783
    [Abstract] [Full Text] [Related]

  • 8. JUN mediates the senescence associated secretory phenotype and immune cell recruitment to prevent prostate cancer progression.
    Redmer T, Raigel M, Sternberg C, Ziegler R, Probst C, Lindner D, Aufinger A, Limberger T, Trachtova K, Kodajova P, Högler S, Schlederer M, Stoiber S, Oberhuber M, Bolis M, Neubauer HA, Miranda S, Tomberger M, Harbusch NS, Garces de Los Fayos Alonso I, Sternberg F, Moriggl R, Theurillat JP, Tichy B, Bystry V, Persson JL, Mathas S, Aberger F, Strobl B, Pospisilova S, Merkel O, Egger G, Lagger S, Kenner L.
    Mol Cancer; 2024 May 29; 23(1):114. PubMed ID: 38811984
    [Abstract] [Full Text] [Related]

  • 9. The role of NFATc1 in prostate cancer progression: cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion.
    Kawahara T, Kashiwagi E, Ide H, Li Y, Zheng Y, Ishiguro H, Miyamoto H.
    Prostate; 2015 May 29; 75(6):573-84. PubMed ID: 25631176
    [Abstract] [Full Text] [Related]

  • 10. Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity.
    Chen NM, Neesse A, Dyck ML, Steuber B, Koenig AO, Lubeseder-Martellato C, Winter T, Forster T, Bohnenberger H, Kitz J, Reuter-Jessen K, Griesmann H, Gaedcke J, Grade M, Zhang JS, Tsai WC, Siveke J, Schildhaus HU, Ströbel P, Johnsen SA, Ellenrieder V, Hessmann E.
    Gastroenterology; 2017 May 29; 152(6):1507-1520.e15. PubMed ID: 28188746
    [Abstract] [Full Text] [Related]

  • 11. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M, Xu J, Siddiqui J, Feng F, Sun Y.
    Mol Cancer; 2016 Dec 12; 15(1):81. PubMed ID: 27955654
    [Abstract] [Full Text] [Related]

  • 12. RUNX2 overexpression and PTEN haploinsufficiency cooperate to promote CXCR7 expression and cellular trafficking, AKT hyperactivation and prostate tumorigenesis.
    Bai Y, Yang Y, Yan Y, Zhong J, Blee AM, Pan Y, Ma T, Karnes RJ, Jimenez R, Xu W, Huang H.
    Theranostics; 2019 Dec 12; 9(12):3459-3475. PubMed ID: 31281490
    [Abstract] [Full Text] [Related]

  • 13. SLUG is a direct transcriptional repressor of PTEN tumor suppressor.
    Uygur B, Abramo K, Leikina E, Vary C, Liaw L, Wu WS.
    Prostate; 2015 Jun 15; 75(9):907-16. PubMed ID: 25728608
    [Abstract] [Full Text] [Related]

  • 14. NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar-Ductal Transdifferentiation in the Pancreas.
    Chen NM, Singh G, Koenig A, Liou GY, Storz P, Zhang JS, Regul L, Nagarajan S, Kühnemuth B, Johnsen SA, Hebrok M, Siveke J, Billadeau DD, Ellenrieder V, Hessmann E.
    Gastroenterology; 2015 May 15; 148(5):1024-1034.e9. PubMed ID: 25623042
    [Abstract] [Full Text] [Related]

  • 15. TIP5 primes prostate luminal cells for the oncogenic transformation mediated by PTEN-loss.
    Pietrzak K, Kuzyakiv R, Simon R, Bolis M, Bär D, Aprigliano R, Theurillat JP, Sauter G, Santoro R.
    Proc Natl Acad Sci U S A; 2020 Feb 18; 117(7):3637-3647. PubMed ID: 32024754
    [Abstract] [Full Text] [Related]

  • 16. Prostate tumorigenesis induced by PTEN deletion involves estrogen receptor β repression.
    Mak P, Li J, Samanta S, Chang C, Jerry DJ, Davis RJ, Leav I, Mercurio AM.
    Cell Rep; 2015 Mar 31; 10(12):1982-91. PubMed ID: 25818291
    [Abstract] [Full Text] [Related]

  • 17. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis.
    Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, Rosivatz E, Woscholski R, Cognetti F, Scher HI, Pandolfi PP.
    J Clin Invest; 2010 Mar 31; 120(3):681-93. PubMed ID: 20197621
    [Abstract] [Full Text] [Related]

  • 18. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis.
    Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, Koutcher JA, Scher HI, Ludwig T, Gerald W, Cordon-Cardo C, Pandolfi PP.
    Nature; 2005 Aug 04; 436(7051):725-30. PubMed ID: 16079851
    [Abstract] [Full Text] [Related]

  • 19. Amino-terminal enhancer of split gene AES encodes a tumor and metastasis suppressor of prostate cancer.
    Okada Y, Sonoshita M, Kakizaki F, Aoyama N, Itatani Y, Uegaki M, Sakamoto H, Kobayashi T, Inoue T, Kamba T, Suzuki A, Ogawa O, Taketo MM.
    Cancer Sci; 2017 Apr 04; 108(4):744-752. PubMed ID: 28178391
    [Abstract] [Full Text] [Related]

  • 20. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model.
    Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, Yan C.
    Oncogene; 2015 Sep 17; 34(38):4975-84. PubMed ID: 25531328
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.