These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
333 related items for PubMed ID: 26489032
41. Comparative genomic and plasmid analysis of beer-spoiling and non-beer-spoiling Lactobacillus brevis isolates. Bergsveinson J, Ziola B. Can J Microbiol; 2017 Dec; 63(12):970-983. PubMed ID: 28977764 [Abstract] [Full Text] [Related]
42. Detection of spoilage-causing yeasts and bacteria in tchapalo, the Ivorian traditional sorghum beer. Attchelouwa CK, Kouakou-Kouamé CA, Ouattara L, Amoikon TLS, N'guessan FK, Marcotte S, Charmel M, Djè MK. Lett Appl Microbiol; 2022 Jul; 75(1):135-144. PubMed ID: 35344598 [Abstract] [Full Text] [Related]
43. Detection of resistance of lactic acid bacteria to a mixture of the hop analogue compounds tetrahydroiso-alpha-acids by noninvasive measurement of intracellular pH. Yansanjav A, Siegumfeldt H, Jespersen L, Vancanneyt M, Swings J, Hollerová I, Leisner JJ. J Appl Microbiol; 2004 Jul; 96(6):1324-32. PubMed ID: 15139925 [Abstract] [Full Text] [Related]
44. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Thanh VN, Mai le T, Tuan DA. Int J Food Microbiol; 2008 Dec 10; 128(2):268-73. PubMed ID: 18838186 [Abstract] [Full Text] [Related]
45. Dipstick Assay for Rapid Detection of Beer Spoilage Organisms. Janagama HK, Mai T, Han S, Nadala L, Nadala C, Samadpour M. J AOAC Int; 2018 Nov 01; 101(6):1913-1919. PubMed ID: 29703269 [Abstract] [Full Text] [Related]
46. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, Shirtliff ME. Microb Pathog; 2017 Jun 01; 107():219-224. PubMed ID: 28377233 [Abstract] [Full Text] [Related]
47. Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage. Deasy T, Mahony J, Neve H, Heller KJ, van Sinderen D. J Food Prot; 2011 Dec 01; 74(12):2157-61. PubMed ID: 22186058 [Abstract] [Full Text] [Related]
48. The effect of lactic acid bacteria on cocoa bean fermentation. Ho VT, Zhao J, Fleet G. Int J Food Microbiol; 2015 Jul 16; 205():54-67. PubMed ID: 25889523 [Abstract] [Full Text] [Related]
49. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Deng Y, Liu J, Li L, Fang H, Tu J, Li B, Liu J, Li H, Xu Z. Int J Food Microbiol; 2015 Aug 03; 206():96-101. PubMed ID: 26001377 [Abstract] [Full Text] [Related]
50. Characterization of the brewery spoilage bacterium Obesumbacterium proteus by automated ribotyping and development of PCR methods for its biotype 1. Koivula TT, Juvonen R, Haikara A, Suihko ML. J Appl Microbiol; 2006 Feb 03; 100(2):398-406. PubMed ID: 16430517 [Abstract] [Full Text] [Related]
51. Development of detection medium for hard-to-culture beer-spoilage lactic acid bacteria. Suzuki K, Asano S, Iijima K, Kuriyama H, Kitagawa Y. J Appl Microbiol; 2008 May 03; 104(5):1458-70. PubMed ID: 18070034 [Abstract] [Full Text] [Related]
52. A specific oligonucleotide primer for the rapid detection of Lactobacillus lindneri by polymerase chain reaction. Yasui T, Okamoto T, Taguchi H. Can J Microbiol; 1997 Feb 03; 43(2):157-63. PubMed ID: 9090105 [Abstract] [Full Text] [Related]
53. The Interior Surfaces of Wooden Barrels Are an Additional Microbial Inoculation Source for Lambic Beer Production. De Roos J, Van der Veken D, De Vuyst L. Appl Environ Microbiol; 2019 Jan 01; 85(1):. PubMed ID: 30389768 [Abstract] [Full Text] [Related]
54. PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Asano S, Shimokawa M, Suzuki K. Methods Mol Biol; 2019 Jan 01; 1887():95-107. PubMed ID: 30506252 [Abstract] [Full Text] [Related]
55. The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Spitaels F, Wieme AD, Janssens M, Aerts M, Van Landschoot A, De Vuyst L, Vandamme P. Food Microbiol; 2015 Aug 01; 49():23-32. PubMed ID: 25846912 [Abstract] [Full Text] [Related]
56. Microbiological diversity and prevalence of spoilage and pathogenic bacteria in commercial fermented alcoholic beverages (beer, fruit wine, refined rice wine, and yakju). Jeon SH, Kim NH, Shim MB, Jeon YW, Ahn JH, Lee SH, Hwang IG, Rhee MS. J Food Prot; 2015 Apr 01; 78(4):812-8. PubMed ID: 25836410 [Abstract] [Full Text] [Related]
58. Bacterial Ecology of Fermented Cucumber Rising pH Spoilage as Determined by Nonculture-Based Methods. Medina E, Pérez-Díaz IM, Breidt F, Hayes J, Franco W, Butz N, Azcarate-Peril MA. J Food Sci; 2016 Jan 01; 81(1):M121-9. PubMed ID: 26605993 [Abstract] [Full Text] [Related]
59. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. De Roos J, De Vuyst L. J Sci Food Agric; 2019 Jan 15; 99(1):25-38. PubMed ID: 30246252 [Abstract] [Full Text] [Related]
60. Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. Abriouel H, Benomar N, Lucas R, Gálvez A. Int J Food Microbiol; 2011 Jan 05; 144(3):487-96. PubMed ID: 21122933 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]