These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1010 related items for PubMed ID: 26490733
1. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733 [Abstract] [Full Text] [Related]
2. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F. BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456 [Abstract] [Full Text] [Related]
3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C. J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862 [Abstract] [Full Text] [Related]
4. The silencing of DEK reduced disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 based on virus-induced gene silencing analysis in tomato. Zhang H, Yan M, Deng R, Song F, Jiang M. Gene; 2020 Feb 15; 727():144245. PubMed ID: 31715302 [Abstract] [Full Text] [Related]
5. Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. Li X, Zhang Y, Huang L, Ouyang Z, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2014 Jun 15; 14():166. PubMed ID: 24930014 [Abstract] [Full Text] [Related]
6. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F. PLoS One; 2014 Jun 15; 9(7):e102067. PubMed ID: 25010573 [Abstract] [Full Text] [Related]
7. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato. Zhang X, Xu Z, Chen L, Ren Z. BMC Plant Biol; 2019 Oct 21; 19(1):437. PubMed ID: 31638895 [Abstract] [Full Text] [Related]
14. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Zhang S, Li X, Sun Z, Shao S, Hu L, Ye M, Zhou Y, Xia X, Yu J, Shi K. J Exp Bot; 2015 Apr 21; 66(7):1951-63. PubMed ID: 25657213 [Abstract] [Full Text] [Related]
15. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A. J Exp Bot; 2022 Jun 02; 73(11):3743-3757. PubMed ID: 35191984 [Abstract] [Full Text] [Related]
17. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L, Liu W, Wang Y. Plant Sci; 2020 Apr 02; 293():110421. PubMed ID: 32081269 [Abstract] [Full Text] [Related]
19. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000. Wang M, Zhu Y, Han R, Yin W, Guo C, Li Z, Wang X. Int J Mol Sci; 2018 Mar 01; 19(3):. PubMed ID: 29494485 [Abstract] [Full Text] [Related]
20. Oligogalacturonides induce resistance in Arabidopsis thaliana by triggering salicylic acid and jasmonic acid pathways against Pst DC3000. Howlader P, Bose SK, Jia X, Zhang C, Wang W, Yin H. Int J Biol Macromol; 2020 Dec 01; 164():4054-4064. PubMed ID: 32910959 [Abstract] [Full Text] [Related] Page: [Next] [New Search]