These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1361 related items for PubMed ID: 26493498

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.
    Mooney RA, Cirillo J, Byblow WD.
    Exp Brain Res; 2018 Jun; 236(6):1651-1663. PubMed ID: 29610948
    [Abstract] [Full Text] [Related]

  • 7. Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials found to be highly variable within individuals over 9 testing sessions.
    Horvath JC, Vogrin SJ, Carter O, Cook MJ, Forte JD.
    Exp Brain Res; 2016 Sep; 234(9):2629-42. PubMed ID: 27150317
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Systematic assessment of duration and intensity of anodal transcranial direct current stimulation on primary motor cortex excitability.
    Tremblay S, Larochelle-Brunet F, Lafleur LP, El Mouderrib S, Lepage JF, Théoret H.
    Eur J Neurosci; 2016 Sep; 44(5):2184-90. PubMed ID: 27336413
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of anodal transcranial direct current stimulation on motor evoked potentials variability in humans.
    Bashir S, Ahmad S, Alatefi M, Hamza A, Sharaf M, Fecteau S, Yoo WK.
    Physiol Rep; 2019 Jul; 7(13):e14087. PubMed ID: 31301123
    [Abstract] [Full Text] [Related]

  • 12. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
    Laczó B, Antal A, Rothkegel H, Paulus W.
    Restor Neurol Neurosci; 2014 Jul; 32(3):403-10. PubMed ID: 24576783
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury.
    Murray LM, Edwards DJ, Ruffini G, Labar D, Stampas A, Pascual-Leone A, Cortes M.
    Arch Phys Med Rehabil; 2015 Apr; 96(4 Suppl):S114-21. PubMed ID: 25461825
    [Abstract] [Full Text] [Related]

  • 16. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation.
    Bergmann TO, Groppa S, Seeger M, Mölle M, Marshall L, Siebner HR.
    J Neurophysiol; 2009 Oct; 102(4):2303-11. PubMed ID: 19692511
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.
    Cabibel V, Muthalib M, Teo WP, Perrey S.
    J Neurophysiol; 2018 Apr 01; 119(4):1266-1272. PubMed ID: 29357451
    [Abstract] [Full Text] [Related]

  • 19. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.
    Ambrus GG, Chaieb L, Stilling R, Rothkegel H, Antal A, Paulus W.
    Neurosci Lett; 2016 Mar 11; 616():98-104. PubMed ID: 26826607
    [Abstract] [Full Text] [Related]

  • 20. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans.
    Groppa S, Bergmann TO, Siems C, Mölle M, Marshall L, Siebner HR.
    Neuroscience; 2010 Apr 14; 166(4):1219-25. PubMed ID: 20083166
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 69.