These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Roles of Nicotinamide Adenine Dinucleotide Phosphate Reoxidation and Ammonium Assimilation in the Secretion of Amino Acids as Byproducts of Clostridium thermocellum. Yayo J, Rydzak T, Kuil T, Karlsson A, Harding DJ, Guss AM, van Maris AJA. Appl Environ Microbiol; 2023 Jan 31; 89(1):e0175322. PubMed ID: 36625594 [Abstract] [Full Text] [Related]
3. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Papanek B, Biswas R, Rydzak T, Guss AM. Metab Eng; 2015 Nov 31; 32():49-54. PubMed ID: 26369438 [Abstract] [Full Text] [Related]
4. Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Beri D, Olson DG, Holwerda EK, Lynd LR. FEMS Microbiol Lett; 2016 Jun 31; 363(11):. PubMed ID: 27190292 [Abstract] [Full Text] [Related]
5. Characterization of the Clostridium thermocellum AdhE, NfnAB, ferredoxin and Pfor proteins for their ability to support high titer ethanol production in Thermoanaerobacterium saccharolyticum. Cui J, Olson DG, Lynd LR. Metab Eng; 2019 Jan 31; 51():32-42. PubMed ID: 30218716 [Abstract] [Full Text] [Related]
8. Assessing the impact of substrate-level enzyme regulations limiting ethanol titer in Clostridium thermocellum using a core kinetic model. Foster C, Boorla VS, Dash S, Gopalakrishnan S, Jacobson TB, Olson DG, Amador-Noguez D, Lynd LR, Maranas CD. Metab Eng; 2022 Jan 04; 69():286-301. PubMed ID: 34982997 [Abstract] [Full Text] [Related]
9. A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis. Schroeder WL, Kuil T, van Maris AJA, Olson DG, Lynd LR, Maranas CD. Metab Eng; 2023 May 04; 77():306-322. PubMed ID: 37085141 [Abstract] [Full Text] [Related]
10. Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Rydzak T, Grigoryan M, Cunningham ZJ, Krokhin OV, Ezzati P, Cicek N, Levin DB, Wilkins JA, Sparling R. Appl Microbiol Biotechnol; 2014 May 04; 98(14):6497-510. PubMed ID: 24841118 [Abstract] [Full Text] [Related]
11. Overflow metabolism and growth cessation in Clostridium thermocellum DSM1313 during high cellulose loading fermentations. Thompson RA, Trinh CT. Biotechnol Bioeng; 2017 Nov 04; 114(11):2592-2604. PubMed ID: 28671264 [Abstract] [Full Text] [Related]
12. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Dash S, Olson DG, Joshua Chan SH, Amador-Noguez D, Lynd LR, Maranas CD. Metab Eng; 2019 Sep 04; 55():161-169. PubMed ID: 31220663 [Abstract] [Full Text] [Related]
13. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Lo J, Zheng T, Hon S, Olson DG, Lynd LR. J Bacteriol; 2015 Apr 04; 197(8):1386-93. PubMed ID: 25666131 [Abstract] [Full Text] [Related]
14. Ethanol tolerance of Clostridium thermocellum: the role of chaotropicity, temperature and pathway thermodynamics on growth and fermentative capacity. Kuil T, Yayo J, Pechan J, Küchler J, van Maris AJA. Microb Cell Fact; 2022 Dec 25; 21(1):273. PubMed ID: 36567317 [Abstract] [Full Text] [Related]
15. Elimination of formate production in Clostridium thermocellum. Rydzak T, Lynd LR, Guss AM. J Ind Microbiol Biotechnol; 2015 Sep 25; 42(9):1263-72. PubMed ID: 26162629 [Abstract] [Full Text] [Related]
16. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb 25; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
17. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR. Proc Natl Acad Sci U S A; 2011 Aug 16; 108(33):13752-7. PubMed ID: 21825121 [Abstract] [Full Text] [Related]
18. Anaerobic microplate assay for direct microbial conversion of switchgrass and Avicel using Clostridium thermocellum. Oguntimein GB, Rodriguez M, Dumitrache A, Shollenberger T, Decker SR, Davison BH, Brown SD. Biotechnol Lett; 2018 Feb 16; 40(2):303-308. PubMed ID: 29124514 [Abstract] [Full Text] [Related]