These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
195 related items for PubMed ID: 26498957
1. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Jia H, Zhang C, Pervaiz T, Zhao P, Liu Z, Wang B, Wang C, Zhang L, Fang J, Qian J. Funct Integr Genomics; 2016 Jan; 16(1):79-94. PubMed ID: 26498957 [Abstract] [Full Text] [Related]
2. Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit. Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR. Plant Physiol Biochem; 2013 Sep; 70():433-44. PubMed ID: 23835361 [Abstract] [Full Text] [Related]
3. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, Wang B, Cui L, Fang J. Plant Biotechnol J; 2016 Oct; 14(10):2045-65. PubMed ID: 27005823 [Abstract] [Full Text] [Related]
4. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Jia H, Xie Z, Wang C, Shangguan L, Qian N, Cui M, Liu Z, Zheng T, Wang M, Fang J. Funct Integr Genomics; 2017 Jul; 17(4):441-457. PubMed ID: 28224250 [Abstract] [Full Text] [Related]
5. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection. Peian Z, Haifeng J, Peijie G, Sadeghnezhad E, Qianqian P, Tianyu D, Teng L, Huanchun J, Jinggui F. Food Chem; 2021 Feb 01; 337():127772. PubMed ID: 32777571 [Abstract] [Full Text] [Related]
6. Strawberry FaWRKY25 Transcription Factor Negatively Regulated the Resistance of Strawberry Fruits to Botrytis cinerea. Jia S, Wang Y, Zhang G, Yan Z, Cai Q. Genes (Basel); 2020 Dec 31; 12(1):. PubMed ID: 33396436 [Abstract] [Full Text] [Related]
7. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. Coelho J, Almeida-Trapp M, Pimentel D, Soares F, Reis P, Rego C, Mithöfer A, Fortes AM. Plant Sci; 2019 Jun 31; 283():266-277. PubMed ID: 31128697 [Abstract] [Full Text] [Related]
8. Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries. Wang K, Liao Y, Kan J, Han L, Zheng Y. Int J Food Microbiol; 2015 Feb 02; 194():32-9. PubMed ID: 25461606 [Abstract] [Full Text] [Related]
9. The Jasmonic Acid Signaling Pathway is Associated with Terpinen-4-ol-Induced Disease Resistance against Botrytis cinerea in Strawberry Fruit. Li Z, Wei Y, Cao Z, Jiang S, Chen Y, Shao X. J Agric Food Chem; 2021 Sep 15; 69(36):10678-10687. PubMed ID: 34468130 [Abstract] [Full Text] [Related]
10. Jasmonic acid-isoleucine formation in grapevine (Vitis vinifera L.) by two enzymes with distinct transcription profiles. Böttcher C, Burbidge CA, di Rienzo V, Boss PK, Davies C. J Integr Plant Biol; 2015 Jul 15; 57(7):618-27. PubMed ID: 25494944 [Abstract] [Full Text] [Related]
11. Jasmonate signalling pathway in strawberry: Genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. Garrido-Bigotes A, Figueroa NE, Figueroa PM, Figueroa CR. PLoS One; 2018 Jul 15; 13(5):e0197118. PubMed ID: 29746533 [Abstract] [Full Text] [Related]
12. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Zhang Z, Lu S, Yu W, Ehsan S, Zhang Y, Jia H, Fang J. Plant Cell Rep; 2022 May 15; 41(5):1243-1260. PubMed ID: 35325290 [Abstract] [Full Text] [Related]
13. Expression of a functional jasmonic acid carboxyl methyltransferase is negatively correlated with strawberry fruit development. Preuß A, Augustin C, Figueroa CR, Hoffmann T, Valpuesta V, Sevilla JF, Schwab W. J Plant Physiol; 2014 Sep 15; 171(15):1315-24. PubMed ID: 25046752 [Abstract] [Full Text] [Related]
14. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Kelloniemi J, Trouvelot S, Héloir MC, Simon A, Dalmais B, Frettinger P, Cimerman A, Fermaud M, Roudet J, Baulande S, Bruel C, Choquer M, Couvelard L, Duthieuw M, Ferrarini A, Flors V, Le Pêcheur P, Loisel E, Morgant G, Poussereau N, Pradier JM, Rascle C, Trdá L, Poinssot B, Viaud M. Mol Plant Microbe Interact; 2015 Nov 15; 28(11):1167-80. PubMed ID: 26267356 [Abstract] [Full Text] [Related]
15. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. Wang C, Ding Y, Yao J, Zhang Y, Sun Y, Colee J, Mou Z. Plant J; 2015 Sep 15; 83(6):1019-33. PubMed ID: 26216741 [Abstract] [Full Text] [Related]
16. The Effect of Ethylene on the Color Change and Resistance to Botrytis cinerea Infection in 'Kyoho' Grape Fruits. Dong T, Zheng T, Fu W, Guan L, Jia H, Fang J. Foods; 2020 Jul 07; 9(7):. PubMed ID: 32645910 [Abstract] [Full Text] [Related]
17. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit. Saavedra GM, Sanfuentes E, Figueroa PM, Figueroa CR. Int J Mol Sci; 2017 Jul 03; 18(7):. PubMed ID: 28671619 [Abstract] [Full Text] [Related]
18. Screening Vitis Genotypes for Responses to Botrytis cinerea and Evaluation of Antioxidant Enzymes, Reactive Oxygen Species and Jasmonic Acid in Resistant and Susceptible Hosts. Rahman MU, Hanif M, Wan R, Hou X, Ahmad B, Wang X. Molecules; 2018 Dec 20; 24(1):. PubMed ID: 30577474 [Abstract] [Full Text] [Related]
19. Exogenous application of a lipid transfer protein-jasmonic acid complex induces protection of grapevine towards infection by Botrytis cinerea. Girault T, François J, Rogniaux H, Pascal S, Delrot S, Coutos-Thévenot P, Gomès E. Plant Physiol Biochem; 2008 Feb 20; 46(2):140-9. PubMed ID: 18023196 [Abstract] [Full Text] [Related]
20. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R. J Exp Bot; 2014 Feb 20; 65(2):401-17. PubMed ID: 24277278 [Abstract] [Full Text] [Related] Page: [Next] [New Search]