These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1270 related items for PubMed ID: 26501517

  • 1. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
    Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA.
    Nat Methods; 2015 Dec; 12(12):1143-9. PubMed ID: 26501517
    [Abstract] [Full Text] [Related]

  • 2. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.
    Klann TS, Black JB, Chellappan M, Safi A, Song L, Hilton IB, Crawford GE, Reddy TE, Gersbach CA.
    Nat Biotechnol; 2017 Jun; 35(6):561-568. PubMed ID: 28369033
    [Abstract] [Full Text] [Related]

  • 3. An efficient KRAB domain for CRISPRi applications in human cells.
    Alerasool N, Segal D, Lee H, Taipale M.
    Nat Methods; 2020 Nov; 17(11):1093-1096. PubMed ID: 33020655
    [Abstract] [Full Text] [Related]

  • 4. Temporal and Spatial Epigenome Editing Allows Precise Gene Regulation in Mammalian Cells.
    Kuscu C, Mammadov R, Czikora A, Unlu H, Tufan T, Fischer NL, Arslan S, Bekiranov S, Kanemaki M, Adli M.
    J Mol Biol; 2019 Jan 04; 431(1):111-121. PubMed ID: 30098338
    [Abstract] [Full Text] [Related]

  • 5. Genome and epigenome engineering CRISPR toolkit for in vivo modulation of cis-regulatory interactions and gene expression in the chicken embryo.
    Williams RM, Senanayake U, Artibani M, Taylor G, Wells D, Ahmed AA, Sauka-Spengler T.
    Development; 2018 Feb 23; 145(4):. PubMed ID: 29386245
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Targeted Chromatinization and Repression of HIV-1 Provirus Transcription with Repurposed CRISPR/Cas9.
    Olson A, Basukala B, Lee S, Gagne M, Wong WW, Henderson AJ.
    Viruses; 2020 Oct 12; 12(10):. PubMed ID: 33053801
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D, Koncz M, Kiss A, Rots MG.
    Methods Mol Biol; 2018 Oct 12; 1767():395-415. PubMed ID: 29524148
    [Abstract] [Full Text] [Related]

  • 10. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM, Machlin L, Dalal N, Lee RE, McDowell I, Shah NN, Drowley L, Randell SH, Reddy TE.
    J Cyst Fibros; 2022 Jan 12; 21(1):164-171. PubMed ID: 34049825
    [Abstract] [Full Text] [Related]

  • 11. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing.
    Li K, Liu Y, Cao H, Zhang Y, Gu Z, Liu X, Yu A, Kaphle P, Dickerson KE, Ni M, Xu J.
    Nat Commun; 2020 Jan 24; 11(1):485. PubMed ID: 31980609
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
    Lawhorn IE, Ferreira JP, Wang CL.
    PLoS One; 2014 Jan 24; 9(11):e113232. PubMed ID: 25398078
    [Abstract] [Full Text] [Related]

  • 13. Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing.
    Moses C, Hodgetts SI, Nugent F, Ben-Ary G, Park KK, Blancafort P, Harvey AR.
    Sci Rep; 2020 Jul 09; 10(1):11393. PubMed ID: 32647121
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Targeted Modification of Epigenetic Marks Using CRISPR/dCas9-SunTag-Based Modular Epigenetic Toolkit.
    Song MK, Kim YS.
    Methods Mol Biol; 2024 Jul 09; 2761():81-91. PubMed ID: 38427231
    [Abstract] [Full Text] [Related]

  • 16. Using an Inducible CRISPR-dCas9-KRAB Effector System to Dissect Transcriptional Regulation in Human Embryonic Stem Cells.
    Parsi KM, Hennessy E, Kearns N, Maehr R.
    Methods Mol Biol; 2017 Jul 09; 1507():221-233. PubMed ID: 27832543
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M, Kanamori M, Someya K, Nakatsukasa H, Yoshimura A.
    Epigenetics Chromatin; 2017 Jul 09; 10():24. PubMed ID: 28503202
    [Abstract] [Full Text] [Related]

  • 19. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements.
    Tycko J, Wainberg M, Marinov GK, Ursu O, Hess GT, Ego BK, Aradhana, Li A, Truong A, Trevino AE, Spees K, Yao D, Kaplow IM, Greenside PG, Morgens DW, Phanstiel DH, Snyder MP, Bintu L, Greenleaf WJ, Kundaje A, Bassik MC.
    Nat Commun; 2019 Sep 06; 10(1):4063. PubMed ID: 31492858
    [Abstract] [Full Text] [Related]

  • 20. Generation of Cell Lines Stably Expressing a dCas9-Fusion or sgRNA to Address Dynamics of Long-Term Effects of Epigenetic Editing.
    Sarno F, Koncz M, Eilers RE, Verschure PJ, Rots MG.
    Methods Mol Biol; 2024 Sep 06; 2842():289-307. PubMed ID: 39012602
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 64.