These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
197 related items for PubMed ID: 26507662
61. Novel Dextransucrase Gtf-DSM, Highly Similar in Sequence to Reuteransucrase GtfO, Displays Unique Product Specificity. Chen Z, Tian Y, Zhang W, Guang C, Meng X, Mu W. J Agric Food Chem; 2019 Nov 20; 67(46):12806-12815. PubMed ID: 31650841 [Abstract] [Full Text] [Related]
62. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5. Bai Y, Dobruchowska JM, van der Kaaij RM, Gerwig GJ, Dijkhuizen L. Carbohydr Polym; 2016 Oct 20; 151():29-39. PubMed ID: 27474540 [Abstract] [Full Text] [Related]
63. Determining the optimum model parameters for oligosaccharide production efficiency using response surface integrated particle swarm optimization method: an experimental validation study. Şensoy AT, İspirli H, Dertli E. Prep Biochem Biotechnol; 2020 Oct 20; 50(8):820-826. PubMed ID: 32282271 [Abstract] [Full Text] [Related]
64. The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Gangoiti J, van Leeuwen SS, Vafiadi C, Dijkhuizen L. Biochim Biophys Acta; 2016 Jun 20; 1860(6):1224-36. PubMed ID: 26868718 [Abstract] [Full Text] [Related]
65. Site Directed Mutagenesis of Dextransucrase DsrM from Weissella cibaria: Transformation to a Reuteransucrase. Chen XY, Gänzle MG. J Agric Food Chem; 2016 Sep 14; 64(36):6848-55. PubMed ID: 27550198 [Abstract] [Full Text] [Related]
66. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Hoffmeister D, Ichinose K, Bechthold A. Chem Biol; 2001 Jun 14; 8(6):557-67. PubMed ID: 11410375 [Abstract] [Full Text] [Related]
67. Molecular and Functional Study of a Branching Sucrase-Like Glucansucrase Reveals an Evolutionary Intermediate between Two Subfamilies of the GH70 Enzymes. Yan M, Wang BH, Xu X, Chang P, Hang F, Wu Z, You C, Liu Z. Appl Environ Microbiol; 2018 May 01; 84(9):. PubMed ID: 29453261 [Abstract] [Full Text] [Related]
68. Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis. Kim HL, Kim AH, Park MB, Lee SW, Park YS. BMB Rep; 2013 Jan 01; 46(1):37-40. PubMed ID: 23351382 [Abstract] [Full Text] [Related]
69. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S. J Biol Chem; 1996 Jul 19; 271(29):17321-9. PubMed ID: 8663322 [Abstract] [Full Text] [Related]
71. Crystal Structure of 4,6-α-Glucanotransferase Supports Diet-Driven Evolution of GH70 Enzymes from α-Amylases in Oral Bacteria. Bai Y, Gangoiti J, Dijkstra BW, Dijkhuizen L, Pijning T. Structure; 2017 Feb 07; 25(2):231-242. PubMed ID: 28065507 [Abstract] [Full Text] [Related]
75. Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L. J Biotechnol; 2013 Jan 20; 163(2):250-72. PubMed ID: 22796091 [Abstract] [Full Text] [Related]
76. The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. Morgan FJ, Birken S, Canfield RE. J Biol Chem; 1975 Jul 10; 250(13):5247-58. PubMed ID: 1150658 [Abstract] [Full Text] [Related]
77. Crystal structure of an Exo-1,5-{alpha}-L-arabinofuranosidase from Streptomyces avermitilis provides insights into the mechanism of substrate discrimination between exo- and endo-type enzymes in glycoside hydrolase family 43. Fujimoto Z, Ichinose H, Maehara T, Honda M, Kitaoka M, Kaneko S. J Biol Chem; 2010 Oct 29; 285(44):34134-43. PubMed ID: 20739278 [Abstract] [Full Text] [Related]
78. The primary structure of human liver manganese superoxide dismutase. Barra D, Schinina ME, Simmaco M, Bannister JV, Bannister WH, Rotilio G, Bossa F. J Biol Chem; 1984 Oct 25; 259(20):12595-601. PubMed ID: 6386798 [Abstract] [Full Text] [Related]
79. N1019D Mutant of Limosilactobacillus reuteri 121 4,6-α-Glucanotransferase GtfB Significantly Improved Catalytic Activity. Wang N, Dong J, Li X, Svensson B, Jin Z, Bai Y. J Agric Food Chem; 2024 Mar 27; 72(12):6509-6518. PubMed ID: 38488047 [Abstract] [Full Text] [Related]
80. Utilisation of an active branching sucrase from Lactobacillus kunkeei AP-37 to produce techno-functional poly-oligosaccharides. İspirli H, Korkmaz K, Arioglu-Tuncil S, Bozkurt F, Sağdıç O, Tunçil YE, Narbad A, Dertli E. Int J Biol Macromol; 2023 May 01; 236():123967. PubMed ID: 36906201 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]