These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 26510286

  • 1. A new algorithm for essential proteins identification based on the integration of protein complex co-expression information and edge clustering coefficient.
    Luo J, Wu J.
    Int J Data Min Bioinform; 2015; 12(3):257-74. PubMed ID: 26510286
    [Abstract] [Full Text] [Related]

  • 2. A new method for the discovery of essential proteins.
    Zhang X, Xu J, Xiao WX.
    PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595
    [Abstract] [Full Text] [Related]

  • 3. Prediction of essential proteins based on overlapping essential modules.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):415-24. PubMed ID: 25122840
    [Abstract] [Full Text] [Related]

  • 4. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015 Dec; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 5. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M, Li W, Wu FX, Pan Y, Wang J.
    J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709
    [Abstract] [Full Text] [Related]

  • 6. Identification of essential proteins based on edge clustering coefficient.
    Wang J, Li M, Wang H, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2012 Jun 14; 9(4):1070-80. PubMed ID: 22084147
    [Abstract] [Full Text] [Related]

  • 7. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P, Ramyachitra D, Banupriya D.
    Gene; 2016 Apr 15; 580(2):144-158. PubMed ID: 26809099
    [Abstract] [Full Text] [Related]

  • 8. A local average connectivity-based method for identifying essential proteins from the network level.
    Li M, Wang J, Chen X, Wang H, Pan Y.
    Comput Biol Chem; 2011 Jun 15; 35(3):143-50. PubMed ID: 21704260
    [Abstract] [Full Text] [Related]

  • 9. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P, Liu C, Mao Y, Guo J, Liu F, Cai W, Zhao F.
    BMC Bioinformatics; 2023 May 17; 24(1):203. PubMed ID: 37198530
    [Abstract] [Full Text] [Related]

  • 10. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y, Tang X, Hu X, Wu W, Ping Q.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):470. PubMed ID: 29219067
    [Abstract] [Full Text] [Related]

  • 11. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J.
    BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429
    [Abstract] [Full Text] [Related]

  • 12. A novel extended Pareto Optimality Consensus model for predicting essential proteins.
    Li G, Li M, Peng W, Li Y, Pan Y, Wang J.
    J Theor Biol; 2019 Nov 07; 480():141-149. PubMed ID: 31398315
    [Abstract] [Full Text] [Related]

  • 13. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.
    Shen X, Yi L, Jiang X, He T, Yang J, Xie W, Hu P, Hu X.
    PLoS One; 2017 Nov 07; 12(10):e0186134. PubMed ID: 29045465
    [Abstract] [Full Text] [Related]

  • 14. Protein complex prediction in interaction network based on network motif.
    Patra S, Mohapatra A.
    Comput Biol Chem; 2020 Dec 07; 89():107399. PubMed ID: 33152665
    [Abstract] [Full Text] [Related]

  • 15. Identifying dynamic protein complexes based on gene expression profiles and PPI networks.
    Li M, Chen W, Wang J, Wu FX, Pan Y.
    Biomed Res Int; 2014 Dec 07; 2014():375262. PubMed ID: 24963481
    [Abstract] [Full Text] [Related]

  • 16. Identifying essential proteins from active PPI networks constructed with dynamic gene expression.
    Xiao Q, Wang J, Peng X, Wu FX, Pan Y.
    BMC Genomics; 2015 Dec 07; 16 Suppl 3(Suppl 3):S1. PubMed ID: 25707432
    [Abstract] [Full Text] [Related]

  • 17. Prediction of Essential Proteins Based on Local Interaction Density.
    Qi Y, Luo J.
    IEEE/ACM Trans Comput Biol Bioinform; 2016 Dec 07; 13(6):1170-1182. PubMed ID: 26701891
    [Abstract] [Full Text] [Related]

  • 18. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W, Xu J, Li Y, Zou X.
    J Bioinform Comput Biol; 2019 Feb 07; 17(1):1950001. PubMed ID: 30803297
    [Abstract] [Full Text] [Related]

  • 19. Noise reduction in protein-protein interaction graphs by the implementation of a novel weighting scheme.
    Kritikos GD, Moschopoulos C, Vazirgiannis M, Kossida S.
    BMC Bioinformatics; 2011 Jun 16; 12():239. PubMed ID: 21679454
    [Abstract] [Full Text] [Related]

  • 20. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S, Zhang Z, Li X, Tan Y, Wang L, Chen Z.
    BMC Bioinformatics; 2021 Sep 08; 22(1):430. PubMed ID: 34496745
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.