These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


202 related items for PubMed ID: 26512889

  • 21. Filopodial actin bundles are not necessary for microtubule advance into the peripheral domain of Aplysia neuronal growth cones.
    Burnette DT, Schaefer AW, Ji L, Danuser G, Forscher P.
    Nat Cell Biol; 2007 Dec; 9(12):1360-9. PubMed ID: 18026092
    [Abstract] [Full Text] [Related]

  • 22. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K, Rehder V.
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [Abstract] [Full Text] [Related]

  • 23. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S, Kalil K.
    J Neurosci; 2018 Jan 10; 38(2):291-307. PubMed ID: 29167405
    [Abstract] [Full Text] [Related]

  • 24. Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo.
    St John JA, Scott S, Chua KY, Claxton C, Key B.
    Neurosci Lett; 2013 Jun 17; 545():11-6. PubMed ID: 23603263
    [Abstract] [Full Text] [Related]

  • 25. Sub-cellular Ca2+ dynamics affected by voltage- and Ca2+-gated K+ channels: Regulation of the soma-growth cone disparity and the quiescent state in Drosophila neurons.
    Berke BA, Lee J, Peng IF, Wu CF.
    Neuroscience; 2006 Oct 27; 142(3):629-44. PubMed ID: 16919393
    [Abstract] [Full Text] [Related]

  • 26. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM, Robles E, Poo M, Spitzer NC.
    Science; 2001 Mar 09; 291(5510):1983-7. PubMed ID: 11239161
    [Abstract] [Full Text] [Related]

  • 27. Filopodial behavior is dependent on the phosphorylation state of neuronal growth cones.
    Cheng S, Mao J, Rehder V.
    Cell Motil Cytoskeleton; 2000 Dec 09; 47(4):337-50. PubMed ID: 11093253
    [Abstract] [Full Text] [Related]

  • 28. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.
    Robles E, Woo S, Gomez TM.
    J Neurosci; 2005 Aug 17; 25(33):7669-81. PubMed ID: 16107653
    [Abstract] [Full Text] [Related]

  • 29. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones.
    Geddis MS, Tornieri K, Giesecke A, Rehder V.
    Cell Motil Cytoskeleton; 2004 Jan 17; 57(1):53-67. PubMed ID: 14648557
    [Abstract] [Full Text] [Related]

  • 30. Semi-automated quantification of filopodial dynamics.
    Costantino S, Kent CB, Godin AG, Kennedy TE, Wiseman PW, Fournier AE.
    J Neurosci Methods; 2008 Jun 15; 171(1):165-73. PubMed ID: 18394712
    [Abstract] [Full Text] [Related]

  • 31. Regulation of chick dorsal root ganglion growth cone filopodia by protein kinase C.
    Bonsall J, Rehder V.
    Brain Res; 1999 Aug 21; 839(1):120-32. PubMed ID: 10482806
    [Abstract] [Full Text] [Related]

  • 32. Predicting axonal response to molecular gradients with a computational model of filopodial dynamics.
    Goodhill GJ, Gu M, Urbach JS.
    Neural Comput; 2004 Nov 21; 16(11):2221-43. PubMed ID: 15476599
    [Abstract] [Full Text] [Related]

  • 33. R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-β/activin signaling.
    Kniss JS, Holbrook S, Herman TG.
    J Neurosci; 2013 Jan 23; 33(4):1509-20. PubMed ID: 23345225
    [Abstract] [Full Text] [Related]

  • 34. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones.
    Szikora S, Földi I, Tóth K, Migh E, Vig A, Bugyi B, Maléth J, Hegyi P, Kaltenecker P, Sanchez-Soriano N, Mihály J.
    J Cell Sci; 2017 Aug 01; 130(15):2506-2519. PubMed ID: 28606990
    [Abstract] [Full Text] [Related]

  • 35. Analysis of growth cone extension in standardized coordinates highlights self-organization rules during wiring of the Drosophila visual system.
    Ji W, Wu LF, Altschuler SJ.
    PLoS Genet; 2021 Nov 01; 17(11):e1009857. PubMed ID: 34731164
    [Abstract] [Full Text] [Related]

  • 36. Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system.
    Clandinin TR, Lee CH, Herman T, Lee RC, Yang AY, Ovasapyan S, Zipursky SL.
    Neuron; 2001 Oct 25; 32(2):237-48. PubMed ID: 11683994
    [Abstract] [Full Text] [Related]

  • 37. Calpain-Mediated Proteolysis of Talin and FAK Regulates Adhesion Dynamics Necessary for Axon Guidance.
    Kerstein PC, Patel KM, Gomez TM.
    J Neurosci; 2017 Feb 08; 37(6):1568-1580. PubMed ID: 28069919
    [Abstract] [Full Text] [Related]

  • 38. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone.
    Sydor AM, Su AL, Wang FS, Xu A, Jay DG.
    J Cell Biol; 1996 Sep 08; 134(5):1197-207. PubMed ID: 8794861
    [Abstract] [Full Text] [Related]

  • 39. The Developmental Rules of Neural Superposition in Drosophila.
    Langen M, Agi E, Altschuler DJ, Wu LF, Altschuler SJ, Hiesinger PR.
    Cell; 2015 Jul 02; 162(1):120-33. PubMed ID: 26119341
    [Abstract] [Full Text] [Related]

  • 40. Common mechanisms underlying growth cone guidance and axon branching.
    Kalil K, Szebenyi G, Dent EW.
    J Neurobiol; 2000 Aug 02; 44(2):145-58. PubMed ID: 10934318
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.