These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


279 related items for PubMed ID: 26524012

  • 1. Spontaneous transition of a water droplet from the Wenzel state to the Cassie state: a molecular dynamics simulation study.
    Wang J, Chen S, Chen D.
    Phys Chem Chem Phys; 2015 Nov 11; 17(45):30533-9. PubMed ID: 26524012
    [Abstract] [Full Text] [Related]

  • 2. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces.
    He X, Wang YF, Zhang BX, Wang SL, Yang YR, Wang XD, Lee DJ.
    Langmuir; 2021 Dec 21; 37(50):14571-14581. PubMed ID: 34894696
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M, Bhushan B.
    Langmuir; 2008 Feb 19; 24(4):1525-33. PubMed ID: 18072794
    [Abstract] [Full Text] [Related]

  • 10. Friction and Wetting Transitions of Magnetic Droplets on Micropillared Superhydrophobic Surfaces.
    Al-Azawi A, Latikka M, Jokinen V, Franssila S, Ras RHA.
    Small; 2017 Oct 19; 13(38):. PubMed ID: 28815888
    [Abstract] [Full Text] [Related]

  • 11. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State.
    Tzitzilis D, Tsekeridis C, Ntakoumis I, Papadopoulos P.
    Langmuir; 2024 Jul 02; 40(26):13422-13427. PubMed ID: 38825812
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Electrowetting-based control of droplet transition and morphology on artificially microstructured surfaces.
    Bahadur V, Garimella SV.
    Langmuir; 2008 Aug 05; 24(15):8338-45. PubMed ID: 18598067
    [Abstract] [Full Text] [Related]

  • 14. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY, Cansoy CE.
    Langmuir; 2009 Dec 15; 25(24):14135-45. PubMed ID: 19630435
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U, Yildirim A, Ozturk FE, Bayindir M.
    ACS Appl Mater Interfaces; 2014 Jun 25; 6(12):9680-8. PubMed ID: 24823960
    [Abstract] [Full Text] [Related]

  • 18. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D, Lee C, Nam Y.
    Langmuir; 2014 Dec 30; 30(51):15468-76. PubMed ID: 25466626
    [Abstract] [Full Text] [Related]

  • 19. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V, Garimella SV.
    Langmuir; 2009 Apr 21; 25(8):4815-20. PubMed ID: 19260655
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.