These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


567 related items for PubMed ID: 26524688

  • 1. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL, Zhang GC, Oh EJ, Subramaniam V, Adiputra A, Subramaniam V, Skory CD, Jang JY, Yu BJ, Park I, Jin YS.
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [Abstract] [Full Text] [Related]

  • 2. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
    Novy V, Brunner B, Müller G, Nidetzky B.
    Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989
    [Abstract] [Full Text] [Related]

  • 3. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR, Kwee NR, Kim H, Jin YS.
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [Abstract] [Full Text] [Related]

  • 4. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J, Li BZ, Shen MH, Hu ML, Song H, Yuan YJ.
    PLoS One; 2013 May; 8(7):e68317. PubMed ID: 23844185
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion.
    Turner TL, Zhang GC, Kim SR, Subramaniam V, Steffen D, Skory CD, Jang JY, Yu BJ, Jin YS.
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8023-33. PubMed ID: 26043971
    [Abstract] [Full Text] [Related]

  • 7. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR, Ha SJ, Kong II, Jin YS.
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS.
    Bioresour Technol; 2013 Dec; 149():525-31. PubMed ID: 24140899
    [Abstract] [Full Text] [Related]

  • 11. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N, Oh EJ, Million G, Cate JH, Jin YS.
    ACS Synth Biol; 2015 Jun 19; 4(6):707-13. PubMed ID: 25587748
    [Abstract] [Full Text] [Related]

  • 12. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS, Kong II, Lesmana A, Million G, Zhang GC, Kim SR, Jin YS.
    Biotechnol Bioeng; 2015 Nov 19; 112(11):2406-11. PubMed ID: 25943337
    [Abstract] [Full Text] [Related]

  • 13. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y, Wu Y, Zhu B, Zhang G, Wei N.
    PLoS One; 2018 Nov 19; 13(6):e0199104. PubMed ID: 29940003
    [Abstract] [Full Text] [Related]

  • 14. Effects of Engineered Saccharomyces cerevisiae Fermenting Cellobiose through Low-Energy-Consuming Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation.
    Choi HJ, Jin YS, Lee WH.
    J Microbiol Biotechnol; 2022 Jan 28; 32(1):117-125. PubMed ID: 34949751
    [Abstract] [Full Text] [Related]

  • 15. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.
    Turner TL, Lane S, Jayakody LN, Zhang GC, Kim H, Cho W, Jin YS.
    FEMS Yeast Res; 2019 Sep 01; 19(6):. PubMed ID: 31505595
    [Abstract] [Full Text] [Related]

  • 16. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S, Jin YS.
    Microb Cell Fact; 2017 May 11; 16(1):82. PubMed ID: 28494761
    [Abstract] [Full Text] [Related]

  • 17. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS.
    Metab Eng; 2013 Jan 11; 15():226-34. PubMed ID: 23103205
    [Abstract] [Full Text] [Related]

  • 18. Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose.
    Lee WH, Jin YS.
    J Microbiol Biotechnol; 2017 Sep 28; 27(9):1649-1656. PubMed ID: 28683531
    [Abstract] [Full Text] [Related]

  • 19. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS.
    Appl Microbiol Biotechnol; 2014 Jun 28; 98(12):5757-64. PubMed ID: 24743979
    [Abstract] [Full Text] [Related]

  • 20. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR, Lee KS, Choi JH, Ha SJ, Kweon DH, Seo JH, Jin YS.
    J Biotechnol; 2010 Nov 28; 150(3):404-7. PubMed ID: 20933550
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 29.