These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 26529143
1. Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Nagiah N, Johnson R, Anderson R, Elliott W, Tan W. Langmuir; 2015 Dec 01; 31(47):12993-3002. PubMed ID: 26529143 [Abstract] [Full Text] [Related]
2. Coaxially-structured fibres with tailored material properties for vascular graft implant. Johnson R, Ding Y, Nagiah N, Monnet E, Tan W. Mater Sci Eng C Mater Biol Appl; 2019 Apr 01; 97():1-11. PubMed ID: 30678891 [Abstract] [Full Text] [Related]
3. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. Elkhouly H, Mamdouh W, El-Korashy DI. J Mater Sci Mater Med; 2021 Aug 28; 32(9):111. PubMed ID: 34453628 [Abstract] [Full Text] [Related]
4. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():402-9. PubMed ID: 24268275 [Abstract] [Full Text] [Related]
5. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications. Gungor-Ozkerim PS, Balkan T, Kose GT, Sarac AS, Kok FN. J Biomed Mater Res A; 2014 Jun 01; 102(6):1897-908. PubMed ID: 23852885 [Abstract] [Full Text] [Related]
6. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Gomes S, Rodrigues G, Martins G, Henriques C, Silva JC. Int J Biol Macromol; 2017 Sep 01; 102():1174-1185. PubMed ID: 28487195 [Abstract] [Full Text] [Related]
7. Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. Nagiah N, El Khoury R, Othman MH, Akimoto J, Ito Y, Roberson DA, Joddar B. ACS Omega; 2022 Apr 26; 7(16):13894-13905. PubMed ID: 35559153 [Abstract] [Full Text] [Related]
8. Hybrid coaxial electrospun nanofibrous scaffolds with limited immunological response created for tissue engineering. Gluck JM, Rahgozar P, Ingle NP, Rofail F, Petrosian A, Cline MG, Jordan MC, Roos KP, Maclellan WR, Shemin RJ, Heydarkhan-Hagvall S. J Biomed Mater Res B Appl Biomater; 2011 Oct 26; 99(1):180-90. PubMed ID: 21732530 [Abstract] [Full Text] [Related]
10. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A. Acta Biomater; 2017 Feb 26; 49():66-77. PubMed ID: 27826004 [Abstract] [Full Text] [Related]
12. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S, Dinda AK, Mishra NC. Mater Sci Eng C Mater Biol Appl; 2013 Apr 01; 33(3):1228-35. PubMed ID: 23827565 [Abstract] [Full Text] [Related]
15. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Pok S, Myers JD, Madihally SV, Jacot JG. Acta Biomater; 2013 Mar 01; 9(3):5630-42. PubMed ID: 23128158 [Abstract] [Full Text] [Related]