These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1263 related items for PubMed ID: 26536868

  • 1. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR, Jacobs DA, Ferris DP, Remy CD.
    J Neuroeng Rehabil; 2015 Nov 04; 12():97. PubMed ID: 26536868
    [Abstract] [Full Text] [Related]

  • 2. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR, Remy CD, Ferris DP.
    J Neuroeng Rehabil; 2018 May 25; 15(1):42. PubMed ID: 29801451
    [Abstract] [Full Text] [Related]

  • 3. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2008 May 25; 211(Pt 9):1402-13. PubMed ID: 18424674
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS, Ferris DP.
    J Exp Biol; 2009 Jan 25; 212(Pt 1):21-31. PubMed ID: 19088207
    [Abstract] [Full Text] [Related]

  • 7. Comparing neural control and mechanically intrinsic control of powered ankle exoskeletons.
    Koller JR, David Remy C, Ferris DP.
    IEEE Int Conf Rehabil Robot; 2017 Jul 25; 2017():294-299. PubMed ID: 28813834
    [Abstract] [Full Text] [Related]

  • 8. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC, Lewis CL, Ferris DP.
    J Neuroeng Rehabil; 2010 Jul 26; 7():33. PubMed ID: 20659331
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.
    Galle S, Malcolm P, Collins SH, De Clercq D.
    J Neuroeng Rehabil; 2017 Apr 27; 14(1):35. PubMed ID: 28449684
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.
    Gasparri GM, Luque J, Lerner ZF.
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr 27; 27(4):751-759. PubMed ID: 30908231
    [Abstract] [Full Text] [Related]

  • 15. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
    Shafer BA, Philius SA, Nuckols RW, McCall J, Young AJ, Sawicki GS.
    Front Bioeng Biotechnol; 2021 Apr 27; 9():615358. PubMed ID: 33954159
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking.
    Lenzi T, Carrozza MC, Agrawal SK.
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov 27; 21(6):938-48. PubMed ID: 23529105
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW, Takahashi KZ, Farris DJ, Mizrachi S, Riemer R, Sawicki GS.
    PLoS One; 2020 Nov 27; 15(8):e0231996. PubMed ID: 32857774
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 64.