These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
342 related items for PubMed ID: 26537826
21. Detection and fitness comparison of target-based highly fludioxonil-resistant isolates of Botrytis cinerea from strawberry and cucumber in China. Sang C, Ren W, Wang J, Xu H, Zhang Z, Zhou M, Chen C, Wang K. Pestic Biochem Physiol; 2018 May; 147():110-118. PubMed ID: 29933980 [Abstract] [Full Text] [Related]
22. Fenhexamid Resistance in Botrytis cinerea from Strawberry Fields in the Carolinas Is Associated with Four Target Gene Mutations. Grabke A, Fernández-Ortuño D, Schnabel G. Plant Dis; 2013 Feb; 97(2):271-276. PubMed ID: 30722320 [Abstract] [Full Text] [Related]
23. Fitness and Competitive Ability of Botrytis cinerea Isolates with Resistance to Multiple Chemical Classes of Fungicides. Chen SN, Luo CX, Hu MJ, Schnabel G. Phytopathology; 2016 Sep; 106(9):997-1005. PubMed ID: 27161219 [Abstract] [Full Text] [Related]
24. Shift of Sensitivity in Botrytis cinerea to Benzimidazole Fungicides in Strawberry Greenhouse Ascribing to the Rising-lowering of E198A Subpopulation and its Visual, On-site Monitoring by Loop-mediated Isothermal Amplification. Liu YH, Yuan SK, Hu XR, Zhang CQ. Sci Rep; 2019 Aug 12; 9(1):11644. PubMed ID: 31406191 [Abstract] [Full Text] [Related]
25. Combination of Suspension Array and Mycelial Growth Assay for Detecting Multiple-Fungicide Resistance in Botrytis cinerea in Hebei Province in China. Su Z, Zhang X, Zhao J, Wang W, Shang L, Ma S, Adzavon YM, Lu F, Weng M, Han X, Yang L, Zhao Q, Zhao P, Xie F, Ma X. Plant Dis; 2019 Jun 12; 103(6):1213-1219. PubMed ID: 30964418 [Abstract] [Full Text] [Related]
26. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S, Suzuki S, Takayanagi T. Pest Manag Sci; 2009 Feb 12; 65(2):197-204. PubMed ID: 19051204 [Abstract] [Full Text] [Related]
27. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Veloukas T, Karaoglanidis GS. Pest Manag Sci; 2012 Jun 12; 68(6):858-64. PubMed ID: 22262495 [Abstract] [Full Text] [Related]
28. Fitness and competitive ability of Botrytis cinerea field isolates with dual resistance to SDHI and QoI fungicides, associated with several sdhB and the cytb G143A mutations. Veloukas T, Kalogeropoulou P, Markoglou AN, Karaoglanidis GS. Phytopathology; 2014 Apr 12; 104(4):347-56. PubMed ID: 24168041 [Abstract] [Full Text] [Related]
29. Fungicide resistance characterized across seven modes of action in Botrytis cinerea isolated from Australian vineyards. Harper LA, Paton S, Hall B, McKay S, Oliver RP, Lopez-Ruiz FJ. Pest Manag Sci; 2022 Apr 12; 78(4):1326-1340. PubMed ID: 34854539 [Abstract] [Full Text] [Related]
30. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit. Jurick WM, Macarisin O, Gaskins VL, Park E, Yu J, Janisiewicz W, Peter KA. Phytopathology; 2017 Mar 12; 107(3):362-368. PubMed ID: 27841961 [Abstract] [Full Text] [Related]
31. Genotypic and Phenotypic Variations in Botrytis spp. Isolates from Single Strawberry Flowers. Hu MJ, Dowling ME, Schnabel G. Plant Dis; 2018 Jan 12; 102(1):179-184. PubMed ID: 30673460 [Abstract] [Full Text] [Related]
32. First Report of Fenhexamid Resistant Isolates of Botrytis cinerea on Grapevine in Chile. Esterio M, Auger J, Ramos C, García H. Plant Dis; 2007 Jun 12; 91(6):768. PubMed ID: 30780494 [Abstract] [Full Text] [Related]
33. Exploring SDHI fungicide resistance in Botrytis cinerea through genetic transformation system and AlphaFold model-based molecular docking. Liu H, Lee G, Sang H. Pest Manag Sci; 2024 Nov 12; 80(11):5954-5964. PubMed ID: 39054739 [Abstract] [Full Text] [Related]
34. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Petrasch S, Knapp SJ, van Kan JAL, Blanco-Ulate B. Mol Plant Pathol; 2019 Jun 12; 20(6):877-892. PubMed ID: 30945788 [Abstract] [Full Text] [Related]
35. Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit. Saito S, Xiao CL. Plant Dis; 2018 Dec 12; 102(12):2545-2549. PubMed ID: 30328758 [Abstract] [Full Text] [Related]
36. atrB-Associated Fludioxonil Resistance in Botrytis fragariae Not Linked to Mutations in Transcription Factor mrr1. Hu MJ, Cosseboom S, Schnabel G. Phytopathology; 2019 May 12; 109(5):839-846. PubMed ID: 30543488 [Abstract] [Full Text] [Related]
37. Molecular characterization of pyraclostrobin resistance and structural diversity of the cytochrome b gene in Botrytis cinerea from apple. Yin YN, Kim YK, Xiao CL. Phytopathology; 2012 Mar 12; 102(3):315-22. PubMed ID: 22085296 [Abstract] [Full Text] [Related]
38. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR, Sharifi-Tehrani A, Hedjaroude GA. Commun Agric Appl Biol Sci; 2007 Mar 12; 72(4):795-800. PubMed ID: 18396812 [Abstract] [Full Text] [Related]
39. Detection and Molecular Characterization of Resistance to the Dicarboximide and Benzamide Fungicides in Botrytis cinerea From Tomato in Hubei Province, China. Adnan M, Hamada MS, Li GQ, Luo CX. Plant Dis; 2018 Jul 12; 102(7):1299-1306. PubMed ID: 30673571 [Abstract] [Full Text] [Related]
40. Fungicide Resistance and Host Influence on Population Structure in Botrytis spp. from Specialty Crops in California. Naegele RP, Abdelsamad N, DeLong JA, Saito S, Xiao CL, Miles TD. Phytopathology; 2022 Dec 12; 112(12):2549-2559. PubMed ID: 35801851 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]