These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Power harvesting using PZT ceramics embedded in orthopedic implants. Chen H, Liu M, Jia C, Wang Z. IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep; 56(9):2010-4. PubMed ID: 19812004 [Abstract] [Full Text] [Related]
4. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Hwang GT, Park H, Lee JH, Oh S, Park KI, Byun M, Park H, Ahn G, Jeong CK, No K, Kwon H, Lee SG, Joung B, Lee KJ. Adv Mater; 2014 Jul 23; 26(28):4880-7. PubMed ID: 24740465 [Abstract] [Full Text] [Related]
5. Multifunctional Pacemaker Lead for Cardiac Energy Harvesting and Pressure Sensing. Dong L, Closson AB, Jin C, Nie Y, Cabe A, Escobedo D, Huang S, Trase I, Xu Z, Chen Z, Feldman MD, Zhang JXJ. Adv Healthc Mater; 2020 Jun 23; 9(11):e2000053. PubMed ID: 32347010 [Abstract] [Full Text] [Related]
6. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film. Xu Z, Jin C, Cabe A, Escobedo D, Gruslova A, Jenney S, Closson AB, Dong L, Chen Z, Feldman MD, Zhang JXJ. Adv Healthc Mater; 2021 Apr 23; 10(8):e2002100. PubMed ID: 33434407 [Abstract] [Full Text] [Related]
7. Towards Batteryless Cardiac Implantable Electronic Devices-The Swiss Way. Zurbuchen A, Haeberlin A, Pfenniger A, Bereuter L, Schaerer J, Jutzi F, Huber C, Fuhrer J, Vogel R. IEEE Trans Biomed Circuits Syst; 2017 Feb 23; 11(1):78-86. PubMed ID: 27662683 [Abstract] [Full Text] [Related]
8. Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices. Cadel ES, Frazer LL, Krech ED, Fischer KJ, Friis EA. J Biomed Mater Res A; 2019 Dec 23; 107(12):2610-2618. PubMed ID: 31376314 [Abstract] [Full Text] [Related]
10. Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants. Ruhparwar A, Osswald A, Kim H, Wakili R, Müller J, Pizanis N, Al-Rashid F, Hendgen-Cotta U, Rassaf T, Kim SJ. Adv Mater; 2024 Aug 23; 36(32):e2313688. PubMed ID: 38685135 [Abstract] [Full Text] [Related]
11. Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices. Wu W, Bai S, Yuan M, Qin Y, Wang ZL, Jing T. ACS Nano; 2012 Jul 24; 6(7):6231-5. PubMed ID: 22713250 [Abstract] [Full Text] [Related]
13. Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. Lee H, Kim H, Kim DY, Seo Y. ACS Omega; 2019 Feb 28; 4(2):2610-2617. PubMed ID: 31459496 [Abstract] [Full Text] [Related]
15. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Qi Y, Jafferis NT, Lyons K, Lee CM, Ahmad H, McAlpine MC. Nano Lett; 2010 Feb 10; 10(2):524-8. PubMed ID: 20102189 [Abstract] [Full Text] [Related]
16. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Hwang GT, Byun M, Jeong CK, Lee KJ. Adv Healthc Mater; 2015 Apr 02; 4(5):646-58. PubMed ID: 25476410 [Abstract] [Full Text] [Related]
18. Prospects of self-powering leadless pacemakers using piezoelectric energy harvesting technology by heart kinetic motion. Khazaee M, Enkeshafi AA, Kavehei O, Riahi S, Rosendahl L, Rezania A. Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul 02; 2023():1-4. PubMed ID: 38082843 [Abstract] [Full Text] [Related]
19. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration. Zhang Y, Lu B, Lü C, Feng X. Proc Math Phys Eng Sci; 2017 Nov 02; 473(2207):20170615. PubMed ID: 29225508 [Abstract] [Full Text] [Related]
20. Symbiotic cardiac pacemaker. Ouyang H, Liu Z, Li N, Shi B, Zou Y, Xie F, Ma Y, Li Z, Li H, Zheng Q, Qu X, Fan Y, Wang ZL, Zhang H, Li Z. Nat Commun; 2019 Apr 23; 10(1):1821. PubMed ID: 31015519 [Abstract] [Full Text] [Related] Page: [Next] [New Search]