These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 26541143

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Metabolomics combined with chemometric tools (PCA, HCA, PLS-DA and SVM) for screening cassava (Manihot esculenta Crantz) roots during postharvest physiological deterioration.
    Uarrota VG, Moresco R, Coelho B, Nunes Eda C, Peruch LA, Neubert Ede O, Rocha M, Maraschin M.
    Food Chem; 2014 Oct 15; 161():67-78. PubMed ID: 24837923
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.
    Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H.
    Plant J; 2011 Jul 15; 67(1):145-56. PubMed ID: 21435052
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. RNAi inhibition of feruloyl CoA 6'-hydroxylase reduces scopoletin biosynthesis and post-harvest physiological deterioration in cassava (Manihot esculenta Crantz) storage roots.
    Liu S, Zainuddin IM, Vanderschuren H, Doughty J, Beeching JR.
    Plant Mol Biol; 2017 May 15; 94(1-2):185-195. PubMed ID: 28315989
    [Abstract] [Full Text] [Related]

  • 7. Melatonin attenuates postharvest physiological deterioration of cassava storage roots.
    Ma Q, Zhang T, Zhang P, Wang ZY.
    J Pineal Res; 2016 May 15; 60(4):424-34. PubMed ID: 26989849
    [Abstract] [Full Text] [Related]

  • 8. The regulation mechanism of ethephon-mediated delaying of postharvest physiological deterioration in cassava storage roots based on quantitative acetylproteomes analysis.
    Yan Y, Li M, Ding Z, Yang J, Xie Z, Ye X, Tie W, Tao X, Chen G, Huo K, Ma J, Ye J, Hu W.
    Food Chem; 2024 Nov 15; 458():140252. PubMed ID: 38964113
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Association of preharvest management with oxidative protection and enzymatic browning in minimally processed cassava.
    Coelho DG, Fonseca KS, de Mélo Neto DF, de Andrade MT, Coelho Junior LF, Ferreira-Silva SL, Simões ADN.
    J Food Biochem; 2019 May 15; 43(5):e12840. PubMed ID: 31353528
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration.
    Uarrota VG, Moresco R, Schmidt EC, Bouzon ZL, da Costa Nunes E, de Oliveira Neubert E, Peruch LA, Rocha M, Maraschin M.
    Data Brief; 2016 Mar 15; 6():503-6. PubMed ID: 26900596
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.