These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


260 related items for PubMed ID: 26541299

  • 21. Polyglutamic Acid Functionalization of Chitosan Nanoparticles Enhances the Therapeutic Efficacy of Insulin Following Oral Administration.
    Urimi D, Agrawal AK, Kushwah V, Jain S.
    AAPS PharmSciTech; 2019 Feb 27; 20(3):131. PubMed ID: 30815757
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Oral delivery of peptide drugs using nanoparticles self-assembled by poly(gamma-glutamic acid) and a chitosan derivative functionalized by trimethylation.
    Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW.
    Bioconjug Chem; 2008 Jun 27; 19(6):1248-55. PubMed ID: 18517235
    [Abstract] [Full Text] [Related]

  • 24. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery.
    Fan W, Xia D, Zhu Q, Li X, He S, Zhu C, Guo S, Hovgaard L, Yang M, Gan Y.
    Biomaterials; 2018 Jan 27; 151():13-23. PubMed ID: 29055774
    [Abstract] [Full Text] [Related]

  • 25. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.
    Liu L, Zhou C, Xia X, Liu Y.
    Int J Nanomedicine; 2016 Jan 27; 11():761-9. PubMed ID: 26966360
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption.
    Song Y, Shi Y, Zhang L, Hu H, Zhang C, Yin M, Chu L, Yan X, Zhao M, Zhang X, Mu H, Sun K.
    Mol Pharm; 2019 Feb 04; 16(2):518-532. PubMed ID: 30601014
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin.
    He Z, Liu Z, Tian H, Hu Y, Liu L, Leong KW, Mao HQ, Chen Y.
    Nanoscale; 2018 Feb 15; 10(7):3307-3319. PubMed ID: 29384554
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery.
    Makhlof A, Tozuka Y, Takeuchi H.
    Eur J Pharm Sci; 2011 Apr 18; 42(5):445-51. PubMed ID: 21182939
    [Abstract] [Full Text] [Related]

  • 36. The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake.
    Jintapattanakit A, Junyaprasert VB, Kissel T.
    J Pharm Sci; 2009 Dec 18; 98(12):4818-30. PubMed ID: 19408295
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery.
    Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW.
    Biomaterials; 2009 Apr 18; 30(12):2329-39. PubMed ID: 19176244
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.