These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
162 related items for PubMed ID: 26549525
1. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds. Li S, Huang R, Zhao Y, Wang W, Li L. Phys Chem Chem Phys; 2015 Dec 14; 17(46):30999-1003. PubMed ID: 26549525 [Abstract] [Full Text] [Related]
2. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds. Li W, Huang R, Wang W, Zhao Y, Li S, Huang C, Li L. Phys Chem Chem Phys; 2015 Feb 28; 17(8):5556-60. PubMed ID: 25642468 [Abstract] [Full Text] [Related]
3. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. Huang R, Liu Y, Fan W, Tan J, Xiao F, Qian L, Li L. J Am Chem Soc; 2013 Aug 07; 135(31):11469-72. PubMed ID: 23885928 [Abstract] [Full Text] [Related]
4. Broad Negative Thermal Expansion Operation-Temperature Window Achieved by Adjusting Fe-Fe Magnetic Exchange Coupling in La(Fe,Si)13 Compounds. Li S, Huang R, Zhao Y, Li W, Wang W, Huang C, Gong P, Lin Z, Li L. Inorg Chem; 2015 Aug 17; 54(16):7868-72. PubMed ID: 26196377 [Abstract] [Full Text] [Related]
5. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds. Wang W, Huang R, Li W, Tan J, Zhao Y, Li S, Huang C, Li L. Phys Chem Chem Phys; 2015 Jan 28; 17(4):2352-6. PubMed ID: 25503989 [Abstract] [Full Text] [Related]
6. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds. Zhao Y, Huang R, Li S, Wang W, Jiang X, Lin Z, Li J, Li L. Phys Chem Chem Phys; 2016 Jul 27; 18(30):20276-80. PubMed ID: 27411397 [Abstract] [Full Text] [Related]
7. Enhanced negative thermal expansion in La(1-x)Pr(x)Fe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium. Li W, Huang R, Wang W, Tan J, Zhao Y, Li S, Huang C, Shen J, Li L. Inorg Chem; 2014 Jun 02; 53(11):5869-73. PubMed ID: 24848739 [Abstract] [Full Text] [Related]
8. Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material. Fleming RO, Gonçalves S, Davarpanah A, Radulov I, Pfeuffer L, Beckmann B, Skokov K, Ren Y, Li T, Evans J, Amaral J, Almeida R, Lopes A, Oliveira G, Araújo JP, Apolinário A, Belo JH. ACS Appl Mater Interfaces; 2022 Sep 28; 14(38):43498-43507. PubMed ID: 36099579 [Abstract] [Full Text] [Related]
9. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range. Hu L, Chen J, Fan L, Ren Y, Rong Y, Pan Z, Deng J, Yu R, Xing X. J Am Chem Soc; 2014 Oct 01; 136(39):13566-9. PubMed ID: 25233253 [Abstract] [Full Text] [Related]
10. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites. Zhao W, Sun Y, Liu Y, Shi K, Lu H, Song P, Wang L, Han H, Yuan X, Wang C. Front Chem; 2018 Oct 01; 6():15. PubMed ID: 29468152 [Abstract] [Full Text] [Related]
11. Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues. Shi N, Gao Q, Sanson A, Li Q, Fan L, Ren Y, Olivi L, Chen J, Xing X. Dalton Trans; 2019 Mar 12; 48(11):3658-3663. PubMed ID: 30762851 [Abstract] [Full Text] [Related]
12. Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn). Hu L, Chen J, Xu J, Wang N, Han F, Ren Y, Pan Z, Rong Y, Huang R, Deng J, Li L, Xing X. J Am Chem Soc; 2016 Nov 09; 138(44):14530-14533. PubMed ID: 27783492 [Abstract] [Full Text] [Related]
13. Low-Frequency Phonon Driven Negative Thermal Expansion in Cubic GaFe(CN)6 Prussian Blue Analogues. Gao Q, Shi N, Sun Q, Sanson A, Milazzo R, Carnera A, Zhu H, Lapidus SH, Ren Y, Huang Q, Chen J, Xing X. Inorg Chem; 2018 Sep 04; 57(17):10918-10924. PubMed ID: 30106577 [Abstract] [Full Text] [Related]
14. Transforming Thermal Expansion from Positive to Negative: The Case of Cubic Magnetic Compounds of (Zr,Nb)Fe2. Song Y, Sun Q, Yokoyama T, Zhu H, Li Q, Huang R, Ren Y, Huang Q, Xing X, Chen J. J Phys Chem Lett; 2020 Mar 05; 11(5):1954-1961. PubMed ID: 32073860 [Abstract] [Full Text] [Related]
15. Adjustable Magnetic Phase Transition Inducing Unusual Zero Thermal Expansion in Cubic RCo2-Based Intermetallic Compounds (R = Rare Earth). Hu J, Lin K, Cao Y, Yu C, Li W, Huang R, Fischer HE, Kato K, Song Y, Chen J, Zhang H, Xing X. Inorg Chem; 2019 May 06; 58(9):5401-5405. PubMed ID: 31017403 [Abstract] [Full Text] [Related]
16. Anisotropic Near-Zero Thermal Expansion in REAg xGa4- x ( RE = La-Nd, Sm, Eu, and Yb) Induced by Structural Reorganization. Mishra V, Subbarao U, Roy S, Sarma SC, Mumbaraddi D, Sarkar S, Peter SC. Inorg Chem; 2018 Oct 15; 57(20):12576-12587. PubMed ID: 30281284 [Abstract] [Full Text] [Related]
17. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chen J, Hu L, Deng J, Xing X. Chem Soc Rev; 2015 Jun 07; 44(11):3522-67. PubMed ID: 25864730 [Abstract] [Full Text] [Related]
18. An X-ray diffraction and MAS NMR study of the thermal expansion properties of calcined siliceous ferrierite. Bull I, Lightfoot P, Villaescusa LA, Bull LM, Gover RK, Evans JS, Morris RE. J Am Chem Soc; 2003 Apr 09; 125(14):4342-9. PubMed ID: 12670258 [Abstract] [Full Text] [Related]
19. Quartz: structural and thermodynamic analyses across the α ↔ β transition with origin of negative thermal expansion (NTE) in β quartz and calcite. Antao SM. Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Apr 09; 72(Pt 2):249-62. PubMed ID: 27048727 [Abstract] [Full Text] [Related]
20. Isotropic Zero Thermal Expansion and Local Vibrational Dynamics in (Sc,Fe)F3. Qin F, Chen J, Aydemir U, Sanson A, Wang L, Pan Z, Xu J, Sun C, Ren Y, Deng J, Yu R, Hu L, Snyder GJ, Xing X. Inorg Chem; 2017 Sep 18; 56(18):10840-10843. PubMed ID: 28880085 [Abstract] [Full Text] [Related] Page: [Next] [New Search]