These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 26552966
1. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Saghi A, Rashed Mohassel MH, Parsa M, Hammami H. Int J Phytoremediation; 2016; 18(4):387-92. PubMed ID: 26552966 [Abstract] [Full Text] [Related]
2. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Surat W, Kruatrachue M, Pokethitiyook P, Tanhan P, Samranwanich T. Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217 [Abstract] [Full Text] [Related]
3. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1. Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Bae JH, Kim KH, Myung H, Oh BT. Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237 [Abstract] [Full Text] [Related]
4. Remediation of lead and cadmium-contaminated soils. Salama AK, Osman KA, Gouda NA. Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [Abstract] [Full Text] [Related]
5. Inorganic materials as ameliorants for soil remediation of metal toxicity to wild mustard (Sinapis arvensis L.). Ribeiro Filho MR, Siqueira JO, Vangronsveld J, Soares CR, Curi N. Int J Phytoremediation; 2011; 13(5):498-512. PubMed ID: 21598779 [Abstract] [Full Text] [Related]
6. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Steliga T, Kluk D. Ecotoxicol Environ Saf; 2020 May; 194():110409. PubMed ID: 32155481 [Abstract] [Full Text] [Related]
7. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D. Sci Total Environ; 2016 Sep 01; 563-564():693-703. PubMed ID: 26524994 [Abstract] [Full Text] [Related]
8. Douglas fir (pseudotsuga menziesii) plantlets responses to as, PB, and sb-contaminated soils from former mines. Bonet A, Pascaud G, Faugeron C, Soubrand M, Joussein E, Gloaguen V, Saladin G. Int J Phytoremediation; 2016 Sep 01; 18(6):559-66. PubMed ID: 26361254 [Abstract] [Full Text] [Related]
9. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Selamat SN, Abdullah SR, Idris M. Int J Phytoremediation; 2014 Sep 01; 16(7-12):694-703. PubMed ID: 24933879 [Abstract] [Full Text] [Related]
10. Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.). Paz-Alberto AM, Sigua GC, Baui BG, Prudente JA. Environ Sci Pollut Res Int; 2007 Nov 01; 14(7):498-504. PubMed ID: 18062482 [Abstract] [Full Text] [Related]
11. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals. Antonkiewicz J, Para A. Int J Phytoremediation; 2016 Nov 01; 18(3):245-50. PubMed ID: 26280197 [Abstract] [Full Text] [Related]
12. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil. Cui S, Zhang T, Zhao S, Li P, Zhou Q, Zhang Q, Han Q. Int J Phytoremediation; 2013 Nov 01; 15(4):299-306. PubMed ID: 23487996 [Abstract] [Full Text] [Related]
13. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J, Cao X, Zhou Q, Ma LQ. Sci Total Environ; 2006 Sep 15; 368(2-3):456-64. PubMed ID: 16600337 [Abstract] [Full Text] [Related]
14. Pb-induced changes in roots of two cultivated rice cultivars grown in lead-contaminated soil mediated by smoke. Akhtar N, Khan S, Malook I, Rehman SU, Jamil M. Environ Sci Pollut Res Int; 2017 Sep 15; 24(26):21298-21310. PubMed ID: 28741209 [Abstract] [Full Text] [Related]
15. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Shumaker KL, Begonia G. Int J Environ Res Public Health; 2005 Aug 15; 2(2):293-8. PubMed ID: 16705830 [Abstract] [Full Text] [Related]
16. Mycorrhizal limonium sinuatum (L.) mill. Enhances accumulation of lead and cadmium. Sheikh-Assadi M, Khandan-Mirkohi A, Alemardan A, Moreno-Jiménez E. Int J Phytoremediation; 2015 Aug 15; 17(1-6):556-62. PubMed ID: 25747242 [Abstract] [Full Text] [Related]
17. Phytoremediation and absorption isotherms of heavy metal ions by Convolvulus tricolor (CTC). Valizadeh R, Mahdavian L. Int J Phytoremediation; 2016 Aug 15; 18(4):329-36. PubMed ID: 26458024 [Abstract] [Full Text] [Related]
18. Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae. Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK. Int J Phytoremediation; 2018 Apr 16; 20(5):483-489. PubMed ID: 29020458 [Abstract] [Full Text] [Related]
19. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead. Wang G, Wang Y, Hu S, Deng N, Wu F. Environ Sci Pollut Res Int; 2015 Jul 16; 22(13):10107-15. PubMed ID: 25687612 [Abstract] [Full Text] [Related]
20. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Souza LA, Andrade SA, Souza SC, Schiavinato MA. Int J Phytoremediation; 2013 Jul 16; 15(5):465-76. PubMed ID: 23488172 [Abstract] [Full Text] [Related] Page: [Next] [New Search]