These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies. Kainerstorfer JM, Sassaroli A, Hallacoglu B, Pierro ML, Fantini S. Acad Radiol; 2014 Feb; 21(2):185-96. PubMed ID: 24439332 [Abstract] [Full Text] [Related]
4. Dynamic microcirculation PIPE model for functional neuroimaging, non-neuroimaging, and coherent hemodynamics spectroscopy: blood volume and flow velocity variations, and vascular autoregulation. Xu M, Zheng Y, Chen X, Li Y, Lin W, Zeng B. Biomed Opt Express; 2020 Aug 01; 11(8):4602-4626. PubMed ID: 32923067 [Abstract] [Full Text] [Related]
5. Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI. Pierro ML, Hallacoglu B, Sassaroli A, Kainerstorfer JM, Fantini S. Neuroimage; 2014 Jan 15; 85 Pt 1(0 1):222-33. PubMed ID: 23562703 [Abstract] [Full Text] [Related]
6. Depth dependence of coherent hemodynamics in the human head. Khaksari K, Blaney G, Sassaroli A, Krishnamurthy N, Pham T, Fantini S. J Biomed Opt; 2018 Nov 15; 23(12):1-9. PubMed ID: 30444084 [Abstract] [Full Text] [Related]
8. [Myocardial microcirculation in humans--new approaches using MRI]. Wacker CM, Bauer WR. Herz; 2003 Mar 15; 28(2):74-81. PubMed ID: 12669220 [Abstract] [Full Text] [Related]
9. Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. Kainerstorfer JM, Sassaroli A, Tgavalekos KT, Fantini S. J Cereb Blood Flow Metab; 2015 Jun 15; 35(6):959-66. PubMed ID: 25669906 [Abstract] [Full Text] [Related]
10. A three-compartment model of the hemodynamic response and oxygen delivery to brain. Zheng Y, Johnston D, Berwick J, Chen D, Billings S, Mayhew J. Neuroimage; 2005 Dec 15; 28(4):925-39. PubMed ID: 16061400 [Abstract] [Full Text] [Related]
11. Oxygen diffusion in a network model of the myocardial microcirculation. Wieringa PA, Stassen HG, Van Kan JJ, Spaan JA. Int J Microcirc Clin Exp; 1993 Oct 15; 13(2):137-69. PubMed ID: 8307707 [Abstract] [Full Text] [Related]
12. A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin. Fantini S. Phys Med Biol; 2002 Sep 21; 47(18):N249-57. PubMed ID: 12375832 [Abstract] [Full Text] [Related]
13. Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Vermeij A, Meel-van den Abeelen AS, Kessels RP, van Beek AH, Claassen JA. Neuroimage; 2014 Jan 15; 85 Pt 1():608-15. PubMed ID: 23660026 [Abstract] [Full Text] [Related]
14. Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. Andropoulos DB, Stayer SA, McKenzie ED, Fraser CD. J Thorac Cardiovasc Surg; 2003 Mar 15; 125(3):491-9. PubMed ID: 12658190 [Abstract] [Full Text] [Related]
15. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution. Laufer J, Elwell C, Delpy D, Beard P. Phys Med Biol; 2005 Sep 21; 50(18):4409-28. PubMed ID: 16148401 [Abstract] [Full Text] [Related]
17. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Huppert TJ, Hoge RD, Diamond SG, Franceschini MA, Boas DA. Neuroimage; 2006 Jan 15; 29(2):368-82. PubMed ID: 16303317 [Abstract] [Full Text] [Related]