These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 26556651

  • 1. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).
    Hooper CM, Castleden IR, Aryamanesh N, Jacoby RP, Millar AH.
    Plant Cell Physiol; 2016 Jan; 57(1):e9. PubMed ID: 26556651
    [Abstract] [Full Text] [Related]

  • 2. CropPAL for discovering divergence in protein subcellular location in crops to support strategies for molecular crop breeding.
    Hooper CM, Castleden IR, Aryamanesh N, Black K, Grasso SV, Millar AH.
    Plant J; 2020 Nov; 104(3):812-827. PubMed ID: 32780488
    [Abstract] [Full Text] [Related]

  • 3. The big five of the monocot genomes.
    Haberer G, Mayer KF, Spannagl M.
    Curr Opin Plant Biol; 2016 Apr; 30():33-40. PubMed ID: 26866569
    [Abstract] [Full Text] [Related]

  • 4. Gramene, a tool for grass genomics.
    Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K, Cartinhour S, Stein LD, McCouch SR.
    Plant Physiol; 2002 Dec; 130(4):1606-13. PubMed ID: 12481044
    [Abstract] [Full Text] [Related]

  • 5. Discovery of cyclotide-like protein sequences in graminaceous crop plants: ancestral precursors of circular proteins?
    Mulvenna JP, Mylne JS, Bharathi R, Burton RA, Shirley NJ, Fincher GB, Anderson MA, Craik DJ.
    Plant Cell; 2006 Sep; 18(9):2134-44. PubMed ID: 16935986
    [Abstract] [Full Text] [Related]

  • 6. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize.
    Bélanger S, Pokhrel S, Czymmek K, Meyers BC.
    Plant Physiol; 2020 Nov; 184(3):1407-1423. PubMed ID: 32917771
    [Abstract] [Full Text] [Related]

  • 7. RiceRBP: a database of experimentally identified RNA-binding proteins in Oryza sativa L.
    Morris RT, Doroshenk KA, Crofts AJ, Lewis N, Okita TW, Wyrick JJ.
    Plant Sci; 2011 Feb; 180(2):204-11. PubMed ID: 21421362
    [Abstract] [Full Text] [Related]

  • 8. Blurring the boundaries between cereal crops and model plants.
    Borrill P.
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [Abstract] [Full Text] [Related]

  • 9. Gramene.
    Ware D.
    Methods Mol Biol; 2007 Dec; 406():315-29. PubMed ID: 18287700
    [Abstract] [Full Text] [Related]

  • 10. Gramene: a bird's eye view of cereal genomes.
    Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B, Canaran P, Fogleman M, Hebbard C, Avraham S, Schmidt S, Casstevens TM, Buckler ES, Stein L, McCouch S.
    Nucleic Acids Res; 2006 Jan 01; 34(Database issue):D717-23. PubMed ID: 16381966
    [Abstract] [Full Text] [Related]

  • 11. TEnest: automated chronological annotation and visualization of nested plant transposable elements.
    Kronmiller BA, Wise RP.
    Plant Physiol; 2008 Jan 01; 146(1):45-59. PubMed ID: 18032588
    [Abstract] [Full Text] [Related]

  • 12. Enrichment of Triticum aestivum gene annotations using ortholog cliques and gene ontologies in other plants.
    Tulpan D, Leger S, Tchagang A, Pan Y.
    BMC Genomics; 2015 Apr 15; 16(1):299. PubMed ID: 25887590
    [Abstract] [Full Text] [Related]

  • 13. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M, Kantety RV, Yu JK, Sorrells ME.
    BMC Genomics; 2005 Feb 18; 6():23. PubMed ID: 15720707
    [Abstract] [Full Text] [Related]

  • 14. Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants.
    Murozuka E, Massange-Sánchez JA, Nielsen K, Gregersen PL, Braumann I.
    PLoS One; 2018 Feb 18; 13(12):e0209769. PubMed ID: 30592743
    [Abstract] [Full Text] [Related]

  • 15. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice.
    Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H.
    Plant Physiol; 2011 Jul 18; 156(3):1087-100. PubMed ID: 21220762
    [Abstract] [Full Text] [Related]

  • 16. Plant Gene and Alternatively Spliced Variant Annotator. A plant genome annotation pipeline for rice gene and alternatively spliced variant identification with cross-species expressed sequence tag conservation from seven plant species.
    Chen FC, Wang SS, Chaw SM, Huang YT, Chuang TJ.
    Plant Physiol; 2007 Mar 18; 143(3):1086-95. PubMed ID: 17220363
    [Abstract] [Full Text] [Related]

  • 17. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice.
    Mitani N, Chiba Y, Yamaji N, Ma JF.
    Plant Cell; 2009 Jul 18; 21(7):2133-42. PubMed ID: 19574435
    [Abstract] [Full Text] [Related]

  • 18. Genetic transformation of major cereal crops.
    Ji Q, Xu X, Wang K.
    Int J Dev Biol; 2013 Jul 18; 57(6-8):495-508. PubMed ID: 24166432
    [Abstract] [Full Text] [Related]

  • 19. The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists.
    Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR.
    Nucleic Acids Res; 2003 Jan 01; 31(1):229-33. PubMed ID: 12519988
    [Abstract] [Full Text] [Related]

  • 20. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis.
    Zhang X, Xiao K, Li S, Li J, Huang J, Chen R, Pang S, Zhou X.
    BMC Plant Biol; 2022 Jan 17; 22(1):37. PubMed ID: 35039017
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.