These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


181 related items for PubMed ID: 26560677

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury.
    van den Heuvel TL, van der Eerden AW, Manniesing R, Ghafoorian M, Tan T, Andriessen TM, Vande Vyvere T, van den Hauwe L, Ter Haar Romeny BM, Goraj BM, Platel B.
    Neuroimage Clin; 2016; 12():241-51. PubMed ID: 27489772
    [Abstract] [Full Text] [Related]

  • 3. Semiautomated detection of cerebral microbleeds in magnetic resonance images.
    Barnes SR, Haacke EM, Ayaz M, Boikov AS, Kirsch W, Kido D.
    Magn Reson Imaging; 2011 Jul; 29(6):844-52. PubMed ID: 21571479
    [Abstract] [Full Text] [Related]

  • 4. Improved cerebral microbleeds detection using their magnetic signature on T2*-phase-contrast: A comparison study in a clinical setting.
    Kaaouana T, Bertrand A, Ouamer F, Law-Ye B, Pyatigorskaya N, Bouyahia A, Thiery N, Dufouil C, Delmaire C, Dormont D, de Rochefort L, Chupin M.
    Neuroimage Clin; 2017 Jul; 15():274-283. PubMed ID: 28560152
    [Abstract] [Full Text] [Related]

  • 5. Susceptibility-weighted imaging is more reliable than T2*-weighted gradient-recalled echo MRI for detecting microbleeds.
    Cheng AL, Batool S, McCreary CR, Lauzon ML, Frayne R, Goyal M, Smith EE.
    Stroke; 2013 Oct; 44(10):2782-6. PubMed ID: 23920014
    [Abstract] [Full Text] [Related]

  • 6. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning.
    Liu S, Utriainen D, Chai C, Chen Y, Wang L, Sethi SK, Xia S, Haacke EM.
    Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296
    [Abstract] [Full Text] [Related]

  • 7. Determination of detection sensitivity for cerebral microbleeds using susceptibility-weighted imaging.
    Buch S, Cheng YN, Hu J, Liu S, Beaver J, Rajagovindan R, Haacke EM.
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27206271
    [Abstract] [Full Text] [Related]

  • 8. Naïve Bayes classifier assisted automated detection of cerebral microbleeds in susceptibility-weighted imaging brain images.
    Ateeq T, Faheem ZB, Ghoneimy M, Ali J, Li Y, Baz A.
    Biochem Cell Biol; 2023 Dec 01; 101(6):562-573. PubMed ID: 37639730
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla.
    Bian W, Banerjee S, Kelly DA, Hess CP, Larson PE, Chang SM, Nelson SJ, Lupo JM.
    J Magn Reson Imaging; 2015 Aug 01; 42(2):269-79. PubMed ID: 25471321
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform.
    Kuijf HJ, de Bresser J, Geerlings MI, Conijn MM, Viergever MA, Biessels GJ, Vincken KL.
    Neuroimage; 2012 Feb 01; 59(3):2266-73. PubMed ID: 21985903
    [Abstract] [Full Text] [Related]

  • 12. Automatic cerebral microbleeds detection from MR images via Independent Subspace Analysis based hierarchical features.
    Qi Dou, Hao Chen, Lequan Yu, Lin Shi, Defeng Wang, Mok VC, Pheng Ann Heng.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Feb 01; 2015():7933-6. PubMed ID: 26738132
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. 2D harmonic filtering of MR phase images in multicenter clinical setting: toward a magnetic signature of cerebral microbleeds.
    Kaaouana T, de Rochefort L, Samaille T, Thiery N, Dufouil C, Delmaire C, Dormont D, Chupin M.
    Neuroimage; 2015 Jan 01; 104():287-300. PubMed ID: 25149849
    [Abstract] [Full Text] [Related]

  • 16. CMB-HUNT: Automatic detection of cerebral microbleeds using a deep neural network.
    Suwalska A, Wang Y, Yuan Z, Jiang Y, Zhu D, Chen J, Cui M, Chen X, Suo C, Polanska J.
    Comput Biol Med; 2022 Dec 01; 151(Pt A):106233. PubMed ID: 36370581
    [Abstract] [Full Text] [Related]

  • 17. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging.
    Yin J, Sun H, Yang J, Guo Q.
    J Magn Reson Imaging; 2015 Apr 01; 41(4):1071-8. PubMed ID: 24753102
    [Abstract] [Full Text] [Related]

  • 18. Comparison of ESWAN, SWI-SPGR, and 2D T2*-weighted GRE sequence for depicting cerebral microbleeds.
    Guo LF, Wang G, Zhu XY, Liu C, Cui L.
    Clin Neuroradiol; 2013 Jun 01; 23(2):121-7. PubMed ID: 23212660
    [Abstract] [Full Text] [Related]

  • 19. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia.
    Ayaz M, Boikov AS, Haacke EM, Kido DK, Kirsch WM.
    J Magn Reson Imaging; 2010 Jan 01; 31(1):142-8. PubMed ID: 20027582
    [Abstract] [Full Text] [Related]

  • 20. Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks.
    Qi Dou, Hao Chen, Lequan Yu, Lei Zhao, Jing Qin, Defeng Wang, Mok VC, Lin Shi, Pheng-Ann Heng.
    IEEE Trans Med Imaging; 2016 May 01; 35(5):1182-1195. PubMed ID: 26886975
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.