These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
355 related items for PubMed ID: 26563813
1. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae. El-Gendy NSh, Madian HR, Nassar HN, Abu Amr SS. Recent Pat Biotechnol; 2015; 9(1):50-62. PubMed ID: 26563813 [Abstract] [Full Text] [Related]
2. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae. El-Gendy NS, Madian HR, Nassar HN, Amr SS. Recent Pat Biotechnol; 2015 Sep 15. PubMed ID: 26373542 [Abstract] [Full Text] [Related]
3. Simultaneous Saccharification and Fermentation of Sugar Beet Pulp for Efficient Bioethanol Production. Berłowska J, Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Patelski P, Dziugan P, Kręgiel D. Biomed Res Int; 2016 Sep 15; 2016():3154929. PubMed ID: 27722169 [Abstract] [Full Text] [Related]
4. Integrated hydrolyzation and fermentation of sugar beet pulp to bioethanol. Rezić T, Oros D, Marković I, Kracher D, Ludwig R, Santek B. J Microbiol Biotechnol; 2013 Sep 28; 23(9):1244-52. PubMed ID: 23851274 [Abstract] [Full Text] [Related]
5. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. Soliman RM, Younis SA, El-Gendy NS, Mostafa SSM, El-Temtamy SA, Hashim AI. J Appl Microbiol; 2018 Aug 28; 125(2):422-440. PubMed ID: 29675837 [Abstract] [Full Text] [Related]
8. A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production. Sheikh MM, Kim CH, Park HH, Nam HG, Lee GS, Jo HS, Lee JY, Kim JW. J Sci Food Agric; 2015 Mar 15; 95(4):843-50. PubMed ID: 25408101 [Abstract] [Full Text] [Related]
9. Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Ahn DJ, Kim SK, Yun HS. Bioprocess Biosyst Eng; 2012 Jan 15; 35(1-2):35-41. PubMed ID: 21909939 [Abstract] [Full Text] [Related]
12. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Lee OK, Kim AL, Seong DH, Lee CG, Jung YT, Lee JW, Lee EY. Bioresour Technol; 2013 Mar 15; 132():197-201. PubMed ID: 23411448 [Abstract] [Full Text] [Related]
14. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Kim KH, Choi IS, Kim HM, Wi SG, Bae HJ. Bioresour Technol; 2014 Feb 15; 153():47-54. PubMed ID: 24333701 [Abstract] [Full Text] [Related]
16. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Chu Q, Li X, Ma B, Xu Y, Ouyang J, Zhu J, Yu S, Yong Q. Bioresour Technol; 2012 Nov 15; 123():699-702. PubMed ID: 22975252 [Abstract] [Full Text] [Related]
17. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Lee OK, Oh YK, Lee EY. Bioresour Technol; 2015 Nov 15; 196():22-7. PubMed ID: 26218538 [Abstract] [Full Text] [Related]